Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Ther ; 223: 107807, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33476641

RESUMO

Drug use poses a serious threat to health systems throughout the world and the number of consumers rises relentlessly every year. The kynurenine pathway, main pathway of tryptophan degradation, has drawn interest in this field due to its relationship with addictive behaviour. Recently it has been confirmed that modulation of kynurenine metabolism at certain stages of the pathway can reduce, prevent or abolish drug seeking-like behaviours in studies with several different drugs. In this review, we present an up-to-date summary of the evidences of a relationship between drug use and the kynurenine pathway, both the alterations of the pathway due to drug use as well as modulation of the pathway as a potential approach to treat drug addiction. The review discusses ethanol, nicotine, cannabis, amphetamines, cocaine and opioids and new prospects in the drug research field are proposed.


Assuntos
Comportamento Aditivo , Cinurenina , Transdução de Sinais , Comportamento Aditivo/metabolismo , Humanos , Cinurenina/metabolismo , Transdução de Sinais/fisiologia
2.
FASEB J ; 33(11): 12900-12914, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31509716

RESUMO

Inflammatory processes have been shown to modify tryptophan (Trp) metabolism. Gut microbiota appears to play a significant role in the induction of peripheral and central inflammation. Ethanol (EtOH) exposure alters gut permeability, but its effects on Trp metabolism and the involvement of gut microbiota have not been studied. We analyzed several parameters of gut-barrier and of peripheral and central Trp metabolism following 2 different EtOH consumption patterns in mice, the binge model, drinking in the dark (DID), and the chronic intermittent (CI) consumption paradigm. Antibiotic treatment was used to evaluate gut microbiota involvement in the CI model. Mice exposed to CI EtOH intake, but not DID, show bacterial translocation and increased plasma LPS immediately after EtOH removal. Gut-barrier permeability to FITC-dextran is increased by CI, and, furthermore, intestinal epithelial tight-junction (TJ) disruption is observed (decreased expression of zonula occludens 1 and occludin) associated with increased matrix metalloproteinase (MMP)-9 activity and iNOS expression. CI EtOH, but not DID, increases kynurenine (Kyn) levels in plasma and limbic forebrain. Intestinal bacterial decontamination prevents the LPS increase but not the permeability to FITC-dextran, TJ disruption, or the increase in MMP-9 activity and iNOS expression. Although plasma Kyn levels are not affected by antibiotic treatment, the elevation of Kyn in brain is prevented, pointing to an involvement of microbiota in CI EtOH-induced changes in brain Trp metabolism. Additionally, CI EtOH produces depressive-like symptoms of anhedonia, which are prevented by the antibiotic treatment thus pointing to an association between anhedonia and the increase in brain Kyn and to the involvement of gut microbiota.-Giménez-Gómez, P., Pérez-Hernández, M., O'Shea, E., Caso, J. R., Martín-Hernández, D., Cervera, L. A., Centelles. M. L. G.-L., Gutiérrez-Lopez, M. D., Colado, M. I. Changes in brain kynurenine levels via gut microbiota and gut-barrier disruption induced by chronic ethanol exposure in mice.


Assuntos
Encéfalo/metabolismo , Etanol/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Cinurenina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Etanol/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Neuropharmacology ; 135: 581-591, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29705534

RESUMO

Recent research suggests that ethanol (EtOH) consumption behaviour can be regulated by modifying the kynurenine (KYN) pathway, although the mechanisms involved have not yet been well elucidated. To further explore the implication of the kynurenine pathway in EtOH consumption we inhibited kynurenine 3-monooxygenase (KMO) activity with Ro 61-8048 (100 mg/kg, i.p.), which shifts the KYN metabolic pathway towards kynurenic acid (KYNA) production. KMO inhibition decreases voluntary binge EtOH consumption and EtOH preference in mice subjected to "drinking in the dark" (DID) and "two-bottle choice" paradigms, respectively. This effect seems to be a consequence of increased KYN concentration, since systemic KYN administration (100 mg/kg, i.p.) similarly deters binge EtOH consumption in the DID model. Despite KYN and KYNA being well-established ligands of the aryl hydrocarbon receptor (AhR), administration of AhR antagonists (TMF 5 mg/kg and CH-223191 20 mg/kg, i.p.) and of an agonist (TCDD 50 µg/kg, intragastric) demonstrates that signalling through this receptor is not involved in EtOH consumption behaviour. Ro 61-8048 did not alter plasma acetaldehyde concentration, but prevented EtOH-induced dopamine release in the nucleus accumbens shell. These results point to a critical involvement of the reward circuitry in the reduction of EtOH consumption induced by KYN and KYNA increments. PNU-120596 (3 mg/kg, i.p.), a positive allosteric modulator of α7-nicotinic acetylcholine receptors, partially prevented the Ro 61-8048-induced decrease in EtOH consumption. Overall, our results highlight the usefulness of manipulating the KYN pathway as a pharmacological tool for modifying EtOH consumption and point to a possible modulator of alcohol drinking behaviour.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Encéfalo/metabolismo , Dopamina/metabolismo , Cinurenina/metabolismo , Núcleo Accumbens/metabolismo , Acetaldeído/sangue , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Animais , Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/administração & dosagem , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Etanol/administração & dosagem , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Quinurenina 3-Mono-Oxigenase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Receptores Colinérgicos/metabolismo , Sulfonamidas/farmacologia , Tiazóis/farmacologia
4.
Front Mol Neurosci ; 10: 278, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28928633

RESUMO

Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates nervous system development and functions acting through G protein-coupled receptors (GPCRs). Here we explore the crosstalk between LPA1 receptor and glutamatergic transmission by examining expression of glutaminase (GA) isoforms in different brain areas isolated from wild-type (WT) and KOLPA1 mice. Silencing of LPA1 receptor induced a severe down-regulation of Gls-encoded long glutaminase protein variant (KGA) (glutaminase gene encoding the kidney-type isoforms, GLS) protein expression in several brain regions, particularly in brain cortex and hippocampus. Immunohistochemical assessment of protein levels for the second type of glutaminase (GA) isoform, glutaminase gene encoding the liver-type isoforms (GLS2), did not detect substantial differences with regard to WT animals. The regional mRNA levels of GLS were determined by real time RT-PCR and did not show significant variations, except for prefrontal and motor cortex values which clearly diminished in KO mice. Total GA activity was also significantly reduced in prefrontal and motor cortex, but remained essentially unchanged in the hippocampus and rest of brain regions examined, suggesting activation of genetic compensatory mechanisms and/or post-translational modifications to compensate for KGA protein deficit. Remarkably, Golgi staining of hippocampal regions showed an altered morphology of glutamatergic pyramidal cells dendritic spines towards a less mature filopodia-like phenotype, as compared with WT littermates. This structural change correlated with a strong decrease of active matrix-metalloproteinase (MMP) 9 in cerebral cortex and hippocampus of KOLPA1 mice. Taken together, these results demonstrate that LPA signaling through LPA1 influence expression of the main isoenzyme of glutamate biosynthesis with strong repercussions on dendritic spines maturation, which may partially explain the cognitive and learning defects previously reported for this colony of KOLPA1 mice.

5.
Neuropharmacology ; 118: 157-166, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28322979

RESUMO

The recreational drug of abuse, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier (BBB) integrity in rats through an early P2X7 receptor-mediated event which induces MMP-9 activity. Increased BBB permeability often causes plasma proteins and water to access cerebral tissue leading to vasogenic edema formation. The current study was performed to examine the effect of a single neurotoxic dose of MDMA (12.5 mg/kg, i.p.) on in vivo edema development associated with changes in the expression of the perivascular astrocytic water channel, AQP4, as well as in the expression of the tight-junction (TJ) protein, claudin-5 and Evans Blue dye extravasation in the hippocampus of adult male Dark Agouti rats. We also evaluated the ability of the MMP-9 inhibitor, SB-3CT (25 mg/kg, i.p.), to prevent these changes in order to validate the involvement of MMP-9 activation in MDMA-induced BBB disruption. The results show that MDMA produces edema of short duration temporally associated with changes in AQP4 expression and a reduction in claudin-5 expression, changes which are prevented by SB-3CT. In addition, MDMA induces a short-term increase in both tPA activity and expression, a serine-protease which is involved in BBB disruption and upregulation of MMP-9 expression. In conclusion, this study provides evidence enough to conclude that MDMA induces edema of short duration due to BBB disruption mediated by MMP-9 activation.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Edema Encefálico/induzido quimicamente , Regulação da Expressão Gênica/efeitos dos fármacos , Alucinógenos/toxicidade , Metaloproteinase 9 da Matriz/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Animais , Aquaporina 4/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/efeitos dos fármacos , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/patologia , Claudina-5/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Compostos Heterocíclicos com 1 Anel/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Imageamento por Ressonância Magnética , Masculino , Permeabilidade/efeitos dos fármacos , Plasminogênio/metabolismo , Ratos , Sulfonas/farmacologia , Fatores de Tempo
6.
Addict Biol ; 22(4): 1103-1116, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26949123

RESUMO

Inflammatory cytokines and reactive oxygen species are reported to be involved in blood-brain barrier (BBB) disruption. Because there is evidence that ethanol (EtOH) induces release of free radicals, cytokines and inflammatory mediators we examined BBB integrity and matrix metalloproteinase (MMP) activity in postmortem human alcoholic brain and investigated the role of TLR4 signaling in BBB permeability in TLR4-knockout mice under a binge-like EtOH drinking protocol. Immunohistochemical studies showed reduced immunoreactivity of the basal lamina protein, collagen-IV and of the tight junction protein, claudin-5 in dorsolateral prefrontal cortex of alcoholics. There was also increased MMP-9 activity and expression of phosphorylated ERK1/2 and p-38. Greater number of CD45+ IR cells were observed associated with an enhanced neuroinflammatory response reflected by increased GFAP and Iba-1 immunostaining. To further explore effects of high EtOH consumption on BBB integrity we studied TLR4-knockout mice exposed to the drinking in the dark paradigm. Repetitive EtOH exposure in wild-type mice decreased hippocampal expression of laminin and collagen-IV and increased IgG immunoreactivity, indicating IgG extravasation. Western blot analysis also revealed increased MyD88 and p-ERK1/2 levels. None of these changes was observed in TLR4-knockout mice. Collectively, these findings indicate that chronic EtOH increases degradation of tight junctions and extracellular matrix in postmortem human brain and induces a neuroinflammatory response associated with activation of ERK1/2 and p-38 and greater MMP-9 activity. The EtOH-induced effects on BBB impairment are not evident in the hippocampus of TLR4-knockout mice, suggesting the involvement of TLR4 signaling in the underlying mechanism leading to BBB disruption in mice.


Assuntos
Alcoolismo/complicações , Consumo Excessivo de Bebidas Alcoólicas/complicações , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Etanol/farmacologia , Receptor 4 Toll-Like/metabolismo , Adulto , Idoso , Alcoolismo/genética , Alcoolismo/metabolismo , Animais , Autopsia , Consumo Excessivo de Bebidas Alcoólicas/genética , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Western Blotting , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Depressores do Sistema Nervoso Central/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Etanol/metabolismo , Feminino , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/genética , Junções Íntimas/metabolismo , Receptor 4 Toll-Like/genética
7.
Int J Neuropsychopharmacol ; 17(8): 1243-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24626059

RESUMO

The recreational drug 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') produces a neuro-inflammatory response in rats characterized by an increase in microglial activation and IL-1ß levels. The integrity of the blood-brain barrier (BBB) is important in preserving the homeostasis of the brain and has been shown to be affected by neuro-inflammatory processes. We aimed to study the effect of a single dose of MDMA on the activity of metalloproteinases (MMPs), expression of extracellular matrix proteins, BBB leakage and the role of the ionotropic purinergic receptor P2X7 (P2X7R) in the changes induced by the drug. Adult male Dark Agouti rats were treated with MDMA (10 mg/kg, i.p.) and killed at several time-points in order to evaluate MMP-9 and MMP-3 activity in the hippocampus and laminin and collagen-IV expression and IgG extravasation in the dentate gyrus. Microglial activation, P2X7R expression and localization were also determined in the dentate gyrus. Separate groups were treated with MDMA and the P2X7R antagonists Brilliant Blue G (BBG; 50 mg/kg, i.p.) or A-438079 (30 mg/kg, i.p.). MDMA increased MMP-3 and MMP-9 activity, reduced laminin and collagen-IV expression and increased IgG immunoreactivity. In addition, MDMA increased microglial activation and P2X7R immunoreactivity in these cells. BBG suppressed the increase in MMP-9 and MMP-3 activity, prevented basal lamina degradation and IgG extravasation into the brain parenchyma. A-438079 also prevented the MDMA-induced reduction in laminin and collagen-IV immunoreactivity. These results indicate that MDMA alters BBB permeability through an early P2X7R-mediated event, which in turn leads to enhancement of MMP-9 and MMP-3 activity and degradation of extracellular matrix.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Agonistas do Receptor Purinérgico P2X/toxicidade , Receptores Purinérgicos P2X7/metabolismo , Animais , Temperatura Corporal/efeitos dos fármacos , Colágeno Tipo IV/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imunoglobulina G/metabolismo , Laminina/metabolismo , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microglia/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/antagonistas & inibidores , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Ratos , Corantes de Rosanilina/metabolismo , Tetrazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA