Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Phycol ; 33(1): 443-458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33191980

RESUMO

Seaweeds (macroalgae) are, together with microalgae, main contributors to the Earth's production of organic matter and atmospheric oxygen as well as fixation of carbon dioxide. In addition, they contain a bounty of fibres and minerals, as well as macro- and micronutrients that can serve both technical and medicinal purposes, as well as be a healthy and nutritious food for humans and animals. It is therefore natural that seaweeds and humans have had a myriad of interwoven relationships both on evolutionary timescales as well as in recent millennia and centuries all the way into the Anthropocene. It is no wonder that seaweeds have also entered and served as a saviour for humankind around the globe in many periods of severe needs and crises. Indeed, they have sometimes been the last resort, be it during times of famine, warfare, outbreak of diseases, nuclear accidents, or as components of securing the fabric of social stability. The present topical review presents testimony from the history of human interaction with seaweeds to the way humankind has, over and over again, been 'saved by seaweeds'. It remains a historical fact that in extreme conditions, such as shortage and wars, humans have turned to seaweeds in times of 'needs must' and created new opportunities for their uses in order to mitigate disasters. Lessons to be learned from this history can be used as reminders and inspiration, and as a guide as how to turn to seaweeds in current and inevitable, future times of crises, not least for the present needs of how to deal with changing climates and the pressing challenges of sustainable and healthy eating.

2.
Nat Commun ; 10(1): 3356, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350407

RESUMO

Seagrass meadows, key ecosystems supporting fisheries, carbon sequestration and coastal protection, are globally threatened. In Europe, loss and recovery of seagrasses are reported, but the changes in extent and density at the continental scale remain unclear. Here we collate assessments of changes from 1869 to 2016 and show that 1/3 of European seagrass area was lost due to disease, deteriorated water quality, and coastal development, with losses peaking in the 1970s and 1980s. Since then, loss rates slowed down for most of the species and fast-growing species recovered in some locations, making the net rate of change in seagrass area experience a reversal in the 2000s, while density metrics improved or remained stable in most sites. Our results demonstrate that decline is not the generalised state among seagrasses nowadays in Europe, in contrast with global assessments, and that deceleration and reversal of declining trends is possible, expectingly bringing back the services they provide.


Assuntos
Magnoliopsida/crescimento & desenvolvimento , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Europa (Continente) , História do Século XX , História do Século XXI , Magnoliopsida/classificação , Biologia Marinha/história
3.
Mar Biol ; 151(5): 1917-1927, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-30363820

RESUMO

Disaggregating seagrass meadows and studying its components separately (clones, ramets, shoots) can provide us insights on meadow dynamics and growth patterns. The clonal growth, dependent upon clonal rules may regulate and impose constraints to plant architecture and, therefore, determine how individual clones evolve into the environment. In order to investigate the relationship between clonal growth rules and clone architecture, the belowground network architecture of single-clones of the seagrass Zostera noltii was studied. Networks were traced in situ after washing out the overlying sediment, and network characteristics were measured using digital analysis: area covered by clone, total rhizome length, type of rhizomatic axes (main, secondary, tertiary, quaternary), number and length of the internodes, branching angles and branching frequencies. This approach revealed that Z. noltii is able to develop into large clones integrating up to 300 internodes, 676 cm of rhizome, 208 shoots and 4,300 cm2 of plant area. Internodal length depended on both, the distance to the apical shoot (time effect) and the axes type (apical dominance effect). However, average branching angle was independent of axis type (average 58.3 ± 0.75), but varied significantly depending on the distance from the apical shoot. This average branching angle allows Z. noltii maximize the rate of centrifugal expansion, maintaining a high density in colonized areas to produce close stands but also minimizing the investment in belowground biomass and ramets overlapping. The clonal architecture of Z. noltii seems to be regulated by the interaction of both, apical dominance strength and clonal integration distance. Moreover, clonal growth rules and growth pattern seem to constrain clonality through (clonal) plant architecture regulations (i.e. branching is restricted in secondary axes, similar average branching angles regardless the axes, the higher the distance to the apex the higher the number of internodes in secondary axes, shorter internodes in secondary and tertiary axes). Future research efforts should focus on how these complex relationships between apical dominance and clonal integration interact to elucidate the temporal (seasonal) and spatial scales of both processes and the outcome at the plant architectural level.

4.
J Exp Bot ; 53(379): 2411-21, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12432033

RESUMO

Within the sheltered creeks of Cádiz bay, Ulva thalli form extended mat-like canopies. The effect of solar ultraviolet radiation on photosynthetic activity, the composition of photosynthetic and xanthophyll cycle pigments, and the amount of RubisCO, chaperonin 60 (CPN 60), and the induction of DNA damage in Ulva aff. rotundata Bliding from southern Spain was assessed in the field. Samples collected from the natural community were covered by screening filters, generating different radiation conditions. During daily cycles, individual thalli showed photoinhibitory effects of the natural solar radiation. This inhibition was even more pronounced in samples only exposed to photosynthetically active radiation (PAR). Strongly increased heat dissipation in these samples indicated the activity of regulatory mechanisms involved in dynamic photoinhibition. Adverse effects of UV-B radiation on photosynthesis were only observed in combination with high levels of PAR, indicating the synergistic effects of the two wavelength ranges. In samples exposed either to PAR+UV-A or to UV-B+UV-A without PAR, no inhibition of photosynthetic quantum yield was found in the course of the day. At the natural site, the top layer of the mat-like canopies is generally completely bleached. Artificially designed Ulva canopies exhibited fast bleaching of the top layer under the natural solar radiation conditions, while this was not observed in canopies either shielded from UV or from PAR. The bleached first layer of the canopies acts as a selective UV-B filter, and thus prevents subcanopy thalli from exposure to harmful radiation. This was confirmed by the differences in photosynthetic activity, pigment composition, and the concentration of RubisCO in thalli with different positions within the canopy. In addition, the induction of the stress protein CPN 60 under UV exposure and the low accumulation of DNA damage indicate the presence of physiological protection mechanisms against harmful UV-B. A mechanism of UV-B-induced inhibition of photosynthesis under field conditions is proposed.


Assuntos
Luz Solar , Árvores/efeitos da radiação , Espanha , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA