Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Struct Mol Biol ; 30(8): 1092-1104, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500929

RESUMO

Chicken erythrocytes are nucleated cells often considered to be transcriptionally inactive, although the epigenetic changes and chromatin remodeling that would mediate transcriptional repression and the extent of gene silencing during avian terminal erythroid differentiation are not fully understood. Here, we characterize the changes in gene expression, chromatin accessibility, genome organization and chromatin nuclear disposition during the terminal stages of erythropoiesis in chicken and uncover complex chromatin reorganization at different genomic scales. We observe a robust decrease in transcription in erythrocytes, but a set of genes maintains their expression, including genes involved in RNA polymerase II (Pol II) promoter-proximal pausing. Erythrocytes exhibit a reoriented nuclear architecture, with accessible chromatin positioned towards the nuclear periphery together with the paused RNA Pol II. In erythrocytes, chromatin domains are partially lost genome-wide, except at minidomains retained around paused promoters. Our results suggest that promoter-proximal pausing of RNA Pol II contributes to the transcriptional regulation of the erythroid genome and highlight the role of RNA polymerase in the maintenance of local chromatin organization.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase II , RNA Polimerase II/metabolismo , Cromatina , Genoma , Eritrócitos/metabolismo , Transcrição Gênica
3.
J Vis Exp ; (175)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34605807

RESUMO

The genome is organized into topologically associating domains (TADs) delimited by boundaries that isolate interactions between domains. In Drosophila, the mechanisms underlying TAD formation and boundaries are still under investigation. The application of the in-nucleus Hi-C method described here helped to dissect the function of architectural protein (AP)-binding sites at TAD boundaries isolating the Notch gene. Genetic modification of domain boundaries that cause loss of APs results in TAD fusion, transcriptional defects, and long-range topological alterations. These results provided evidence demonstrating the contribution of genetic elements to domain boundary formation and gene expression control in Drosophila. Here, the in-nucleus Hi-C method has been described in detail, which provides important checkpoints to assess the quality of the experiment along with the protocol. Also shown are the required numbers of sequencing reads and valid Hi-C pairs to analyze genomic interactions at different genomic scales. CRISPR/Cas9-mediated genetic editing of regulatory elements and high-resolution profiling of genomic interactions using this in-nucleus Hi-C protocol could be a powerful combination for the investigation of the structural function of genetic elements.


Assuntos
Cromatina , Drosophila , Animais , Núcleo Celular , Drosophila/genética , Drosophila melanogaster/genética , Genômica
4.
Front Genet ; 11: 928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061937

RESUMO

Alu elements are primate-specific repeats and represent the most abundant type of transposable elements (TE) in the human genome. Genome-wide analysis of the enrichment of histone post-translational modifications suggests that human Alu sequences could function as transcriptional enhancers; however, no functional experiments have evaluated the role of Alu sequences in the control of transcription in situ. The present study analyses the regulatory activity of a human Alu sequence from the AluSx family located in the second intron of the long intergenic non-coding RNA Linc00441, found in divergent orientation to the RB1 gene. We observed that the Alu sequence acts as an enhancer element based on reporter gene assays while CRISPR-Cas9 deletions of the Alu sequence in K562 cells resulted in a marked transcriptional upregulation of Linc00441 and a decrease in proliferation. Our results suggest that an intragenic Alu sequence with enhancer activity can act as a transcriptional attenuator of its host lincRNA.

5.
J Cell Biochem ; 119(1): 401-413, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28590037

RESUMO

The pathological characteristic of cirrhosis is scarring which results in a structurally distorted and dysfunctional liver. Previously, we demonstrated that Col1a1 and Pparg genes are deregulated in CCl4 -induced cirrhosis but their normal expression levels are recovered upon treatment with IFC-305, an adenosine derivative. We observed that adenosine was able to modulate S-adenosylmethionine-dependent trans-methylation reactions, and recently, we found that IFC-305 modulates HDAC3 expression. Here, we investigated whether epigenetic mechanisms, involving DNA methylation processes and histone acetylation, could explain the re-establishment of gene expression mediated by IFC-305 in cirrhosis. Therefore, Wistar rats were CCl4 treated and a sub-group received IFC-305 to reverse fibrosis. Global changes in DNA methylation, 5-hydroxymethylation, and histone H4 acetylation were observed after treatment with IFC-305. In particular, during cirrhosis, the Pparg gene promoter is depleted of histone H4 acetylation, whereas IFC-305 administration restores normal histone acetylation levels which correlates with an increase of Pparg transcript and protein levels. In contrast, the promoter of Col1a1 gene is hypomethylated during cirrhosis but gains DNA methylation upon treatment with IFC-305 which correlates with a reduction of Col1a1 transcript and protein levels. Our results suggest a model in which cirrhosis results in a general loss of permissive chromatin histone marks which triggers the repression of the Pparg gene and the upregulation of the Col1a1 gene. Treatment with IFC-305 restores epigenetic modifications globally and specifically at the promoters of Pparg and Col1a1 genes. These results reveal one of the mechanisms of action of IFC-305 and suggest a possible therapeutic function in cirrhosis. J. Cell. Biochem. 119: 401-413, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Adenosina/análogos & derivados , Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , Cirrose Hepática Experimental/tratamento farmacológico , Adenosina/farmacologia , Animais , Intoxicação por Tetracloreto de Carbono/genética , Intoxicação por Tetracloreto de Carbono/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Ratos , Ratos Wistar
6.
BMC Cancer ; 16: 226, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26983574

RESUMO

BACKGROUND: Post-transcriptional regulation by microRNAs is recognized as one of the major pathways for the control of cellular homeostasis. Less well understood is the transcriptional and epigenetic regulation of genes encoding microRNAs. In the present study we addressed the epigenetic regulation of the miR-181c in normal and malignant brain cells. METHODS: To explore the epigenetic regulation of the miR-181c we evaluated its expression using RT-qPCR and the in vivo binding of the CCCTC-binding factor (CTCF) to its regulatory region in different glioblastoma cell lines. DNA methylation survey, chromatin immunoprecipitation and RNA interference assays were used to assess the role of CTCF in the miR-181c epigenetic silencing. RESULTS: We found that miR-181c is downregulated in glioblastoma cell lines, as compared to normal brain tissues. Loss of expression correlated with a notorious gain of DNA methylation at the miR-181c promoter region and the dissociation of the multifunctional nuclear factor CTCF. Taking advantage of the genomic distribution of CTCF in different cell types we propose that CTCF has a local and cell type specific regulatory role over the miR-181c and not an architectural one through chromatin loop formation. This is supported by the depletion of CTCF in glioblastoma cells affecting the expression levels of NOTCH2 as a target of miR-181c. CONCLUSION: Together, our results point to the epigenetic role of CTCF in the regulation of microRNAs implicated in tumorigenesis.


Assuntos
Biomarcadores Tumorais/biossíntese , Glioblastoma/genética , MicroRNAs/biossíntese , Receptor Notch2/biossíntese , Proteínas Repressoras/biossíntese , Biomarcadores Tumorais/genética , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Metilação de DNA/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioblastoma/patologia , Humanos , Receptor Notch2/genética , Proteínas Repressoras/genética
7.
Biochim Biophys Acta ; 1849(8): 955-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26079690

RESUMO

The three-dimensional architecture of genomes provides new insights about genome organization and function, but many aspects remain unsolved at the local genomic scale. Here we investigate the regulation of two erythroid-specific loci, a folate receptor gene (FOLR1) and the ß-globin gene cluster, which are separated by 16kb of constitutive heterochromatin. We found that in early erythroid differentiation the FOLR1 gene presents a permissive chromatin configuration that allows its expression. Once the transition to the next differentiation state occurs, the heterochromatin spreads into the FOLR1 domain, concomitant with the dissociation of CTCF from a novel binding site, thereby resulting in irreversible silencing of the FOLR1 gene. We demonstrate that the sequences surrounding the CTCF-binding site possess classical insulator properties in vitro and in vivo. In contrast, the chicken cHS4 ß-globin insulator present on the other side of the heterochromatic segment is in a constitutive open chromatin configuration, with CTCF constantly bound from the early stages of erythroid differentiation. Therefore, this study demonstrates that the 16kb of constitutive heterochromatin contributes to silencing of the FOLR1 gene during erythroid differentiation.


Assuntos
Receptor 1 de Folato/genética , Loci Gênicos , Elementos Isolantes/fisiologia , Globinas beta/genética , Animais , Diferenciação Celular/genética , Linhagem Celular Transformada , Embrião de Galinha , Galinhas , Cromatina/genética , Cromatina/metabolismo , Eritropoese/genética , Receptor 1 de Folato/metabolismo , Regulação da Expressão Gênica , Heterocromatina/genética , Heterocromatina/metabolismo
8.
Methods Mol Biol ; 1165: 53-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24839018

RESUMO

Cellular homeostasis is the result of an intricate and coordinated combinatorial of biochemical and molecular processes. Among them is the control of gene expression in the context of the chromatin structure which is central for cell survival. Interdependent action of transcription factors, cofactors, chromatin remodeling activities, and three-dimensional organization of the genome are responsible to reach exquisite levels of gene expression. Among such transcription factors there is a subset of highly specialized nuclear factors with features resembling master regulators with a large variety of functions. This is turning to be the case of the multifunctional nuclear factor CCCTC-binding protein (CTCF) which is involved in gene regulation, chromatin organization, and three-dimensional conformation of the genome inside the cell nucleus. Technically its study has turned to be challenging, in particular its posttranscriptional interference by small interference RNAs. Here we describe three main strategies to downregulate the overall abundance of CTCF in culture cell lines.


Assuntos
Técnicas Genéticas , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Antibacterianos/farmacologia , Fator de Ligação a CCCTC , Linhagem Celular , Regulação para Baixo , Farmacorresistência Bacteriana , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Lentivirus/genética , Proteínas Luminescentes/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução Genética
9.
Mol Biol Cell ; 21(3): 489-98, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20016006

RESUMO

The Kluyveromyces lactis heterotrimeric G protein is a canonical Galphabetagamma complex; however, in contrast to Saccharomyces cerevisiae, where the Ggamma subunit is essential for mating, disruption of the KlGgamma gene yielded cells with almost intact mating capacity. Expression of a nonfarnesylated Ggamma, which behaves as a dominant-negative in S. cerevisiae, did not affect mating in wild-type and DeltaGgamma cells of K. lactis. In contrast to the moderate sterility shown by the single DeltaKlGalpha, the double DeltaKlGalpha DeltaKlGgamma mutant displayed full sterility. A partial sterile phenotype of the DeltaKlGgamma mutant was obtained in conditions where the KlGbeta subunit interacted defectively with the Galpha subunit. The addition of a CCAAX motif to the C-end of KlGbeta, partially suppressed the lack of both KlGalpha and KlGgamma subunits. In cells lacking KlGgamma, the KlGbeta subunit cofractionated with KlGalpha in the plasma membrane, but in the DeltaKlGalpha DeltaKlGgamma strain was located in the cytosol. When the KlGbeta-KlGalpha interaction was affected in the DeltaKlGgamma mutant, most KlGbeta fractionated to the cytosol. In contrast to the generic model of G-protein function, the Gbeta subunit of K. lactis has the capacity to attach to the membrane and to activate mating effectors in absence of the Ggamma subunit.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Kluyveromyces/fisiologia , Feromônios/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA