Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
J Pineal Res ; 76(4): e12961, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751172

RESUMO

Melatonin is a neurohormone synthesized from dietary tryptophan in various organs, including the pineal gland and the retina. In the pineal gland, melatonin is produced at night under the control of the master clock located in the suprachiasmatic nuclei of the hypothalamus. Under physiological conditions, the pineal gland seems to constitute the unique source of circulating melatonin. Melatonin is involved in cellular metabolism in different ways. First, the circadian rhythm of melatonin helps the maintenance of proper internal timing, the disruption of which has deleterious effects on metabolic health. Second, melatonin modulates lipid metabolism, notably through diminished lipogenesis, and it has an antidiabetic effect, at least in several animal models. Third, pharmacological doses of melatonin have antioxidative, free radical-scavenging, and anti-inflammatory properties in various in vitro cellular models. As a result, melatonin can be considered both a circadian time-giver and a homeostatic monitor of cellular metabolism, via multiple mechanisms of action that are not all fully characterized. Aging, circadian disruption, and artificial light at night are conditions combining increased metabolic risks with diminished circulating levels of melatonin. Accordingly, melatonin supplementation could be of potential therapeutic value in the treatment or prevention of metabolic disorders. More clinical trials in controlled conditions are needed, notably taking greater account of circadian rhythmicity.


Assuntos
Ritmo Circadiano , Homeostase , Melatonina , Melatonina/metabolismo , Animais , Humanos , Ritmo Circadiano/fisiologia , Homeostase/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Glândula Pineal/metabolismo
2.
Sleep ; 45(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35512227

RESUMO

STUDY OBJECTIVES: To investigate sleep patterns in the camel by combining behavioral and polysomnography (PSG) methods. METHODS: A noninvasive PSG study was conducted over four nights on four animals. Additionally, video recordings were used to monitor the sleep behaviors associated with different vigilance states. RESULTS: During the night, short periods of sporadic sleep-like behavior corresponding to a specific posture, sternal recumbency (SR) with the head lying down on the ground, were observed. The PSG results showed rapid shifts between five vigilance states, including wakefulness, drowsiness, rapid eye movement (REM) sleep, non-REM (NREM) sleep, and rumination. The camels typically slept only 1.7 hours per night, subdivided into 0.5 hours of REM sleep and 1.2 hours of NREM sleep. Camels spent most of the night being awake (2.3 hours), ruminating (2.4 hours), or drowsing (1.9 hours). Various combinations of transitions between the different vigilance states were observed, with a notable transition into REM sleep directly from drowsiness (9%) or wakefulness (4%). Behavioral postures were found to correlate with PSG vigilance states, thereby allowing a reliable prediction of the sleep stage based on SR and the head position (erected, motionless, or lying down on the ground). Notably, 100% of REM sleep occurred during the Head Lying Down-SR posture. CONCLUSIONS: The camel is a diurnal species with a polyphasic sleep pattern at night. The best correlation between PSG and ethogram data indicates that sleep duration can be predicted by the behavioral method, provided that drowsiness is considered a part of sleep.


Assuntos
Camelus , Eletroencefalografia , Animais , Eletroencefalografia/métodos , Polissonografia/métodos , Sono , Fases do Sono , Vigília
3.
Chronobiol Int ; 39(1): 129-150, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965824

RESUMO

The dromedary camel (Camelus dromedarius) is a large ungulate that copes well with the xeric environment of the desert. Its peculiar adaptation to heat and dehydration is well-known. However, its behavior and general activity is far from being completely understood. The present study was carried out to investigate the ecological effect of the various seasons on the locomotor activity (LA) rhythm and diurnal activity of this species. Six adult female camels were maintained under mesic semi-natural conditions of the environment during four periods of 10 days in each season: autumn, winter, spring and summer. In addition, three female camels were used to test the effect of rain on the LA rhythm during a period of 18 days during the winter. The animal's LA was recorded using the locomotion scoring method. Camels displayed a clear 24.0h LA rhythm throughout the four seasons. Activity was intense during Day-time (6-22 fold higher in comparison to night) and dropped or completely disappeared during nighttime. Mean daytime total activity was significantly higher in the summer as compared to winter. Regardless of the season, the active phase in camels coincided with the time of the photophase and thermophase. Furthermore, the daily duration of the time spent active was directly correlated to the seasonal changes of photoperiod. The diurnal activity remained unchanged over the four seasons. For each season, the start and the end of the active phase were synchronized with the onset of sunrise and sunset. At these time periods, temperature remained incredibly stable with a change ranging from 0.002 to 0.210°C; whereas, changes of light intensity were greater and faster with a change from 0.1 to 600 lux representing a variation of 3215-7192 fold in just 25-29 min. Rainfall affected the pattern of the LA rhythm with occurrence of abnormal nocturnal activity during nighttime disturbing nocturnal rest and sleep. Here we show that the dromedary camel exhibits significant seasonal changes of its activity within daylight hours. However, the diurnal pattern remains unchanged regardless of the season; whereas, abnormal nocturnal activity is observed during periods of rain. The activity onset and offset in this species seems to be primarily driven by the changes in light intensity at dusk and dawn.


Assuntos
Camelus , Ritmo Circadiano , Animais , Feminino , Locomoção , Fotoperíodo , Estações do Ano
4.
Horm Behav ; 136: 105076, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634697

RESUMO

Melatonin, a major signal of the circadian system, is also involved in brain functions such as learning and memory. Chronic melatonin treatment is known to improve memory performances, but the respective contribution of its central receptors, MT1 and MT2, is still unclear. Here, we used new single receptor deficient MT1-/- and MT2-/- mice to investigate the contribution of each receptor in the positive effect of chronic melatonin treatment on long-term recognition memory. The lack of MT2 receptor precluded memory-enhancing effect of melatonin in the object recognition task and to a lesser extent in the object location task, whereas the lack of MT1 receptor mitigated its effect in the object location task only. Our findings support a key role of MT2 in mediating melatonin's beneficial action on long-term object recognition memory, whereas MT1 may contribute to the effect on object location memory.


Assuntos
Melatonina , Animais , Cognição , Masculino , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/fisiologia
5.
Handb Clin Neurol ; 179: 331-343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225973

RESUMO

Melatonin (MLT), secreted during the night by the pineal gland, is an efferent hormonal signal of the master circadian clock located in the suprachiasmatic nucleus (SCN). Consequently, it is a reliable phase marker of the SCN clock. If one defines as "chronobiotic," a drug able to influence the phase and/or the period of the circadian clock, MLT is a very potent one. The most convincing data obtained so far come from studies on totally blind individuals. Exogenous MLT administered daily entrains the sleep-wake cycle of these individuals to a 24-h cycle. MLT, however, is not essential to sleep. In nocturnally, active mammals, MLT is released during the night concomitantly with the daily period of wakefulness. Therefore, MLT cannot be simply considered as a sleep hormone, but rather as a signal of darkness. Its role in the circadian system is to reinforce nighttime physiology, including timing of the sleep-wake cycle and other circadian rhythms. MLT exerts its effects on the sleep cycle especially by a direct action on the master circadian clock. The sleep-wake cycle is depending not only on the circadian clock but also on an orchestrated network of different centers in the brain. Thus, the control of sleep-wake rhythm might be explained by a parallel and concomitant action of MLT on the master clock (chronobiotic effect) and on sleep-related structures within the brain. MLT acts through two high-affinity membrane receptors (MT1 and MT2) with striking differences in their distribution pattern. MLT is a powerful synchronizer of human circadian rhythms, thus justifying the use of MLT and MLT agonists in clinical medicine as pharmacological tools to manipulate the sleep-wake cycle, and to treat sleep disorders and other circadian disorders. Available MLT analogs/drugs are all nonspecific MT1/MT2 agonists. The development of new ligands which are highly selectivity for each subtype is clearly a new challenge for the field and will be at the root of new therapeutic agents for curing specific pathologies, including sleep disorders.


Assuntos
Melatonina , Animais , Ritmo Circadiano , Humanos , Sono , Núcleo Supraquiasmático , Vigília
6.
Eur J Neurosci ; 53(11): 3612-3620, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33840135

RESUMO

The duration of daytime light phase (photoperiod) controls reproduction in seasonal mammals. Syrian hamsters are sexually active when exposed to long photoperiod, while gonadal atrophy is observed after exposure to short photoperiod. The photorefractory period, or photorefractoriness, is a particular state of spontaneous recrudescence of sexual activity that occurs after a long-term exposure to short photoperiod. Expression of core clock genes in the master circadian clock contained in the suprachiasmatic nuclei depends on photoperiodic conditions. Interestingly, the expression of the Clock gene is also modified in photorefractory Syrian hamsters. Since melatonin and testosterone levels in seasonal species are dependent on photoperiod, photoperiodic variations of Clock mRNA levels in the suprachiasmatic clock could be a consequence of these hormonal changes. To test this hypothesis, we analysed the effects of pinealectomy on Clock mRNA changes due to long to short photoperiod transition and of gonadectomy on Clock mRNA levels in photorefractory period. Our data show that the suprachiasmatic integration of the short photoperiod (assessed by a rhythmic expression profile of Clock) is independent of the presence of melatonin. Furthermore, constitutively low expression of Clock observed during the photorefractory period does not require the presence of either melatonin or testosterone. However, we show that both hormones provide positive feedback on average levels of Clock expression. Thus, our data support the hypothesis that daily variations of Clock levels in the suprachiasmatic nuclei are influenced by photoperiodic changes and the time spent in short photoperiod, independently of seasonal modifications of melatonin or testosterone levels.


Assuntos
Melatonina , Fotoperíodo , Animais , Castração , Ritmo Circadiano , Cricetinae , Expressão Gênica , Mesocricetus , Pinealectomia , Núcleo Supraquiasmático
7.
Sci Rep ; 10(1): 19515, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177571

RESUMO

In the dromedary camel, a well-adapted desert mammal, daily ambient temperature (Ta)-cycles have been shown to synchronize the central circadian clock. Such entrainment has been demonstrated by examining two circadian outputs, body temperature and melatonin rhythms. Locomotor activity (LA), another circadian output not yet investigated in the camel, may provide further information on such specific entrainment. To verify if daily LA is an endogenous rhythm and whether the desert Ta-cycle can entrain it, six dromedaries were first kept under total darkness and constant-Ta. Results showed that the LA rhythm free runs with a period of 24.8-24.9 h. After having verified that the light-dark cycle synchronizes LA, camels were subjected to a Ta-cycle with warmer temperatures during subjective days and cooler temperatures during subjective nights. Results showed that the free-running LA rhythm was entrained by the Ta-cycle with a period of exactly 24.0 h, while a 12 h Ta-cycle phase advance induced an inversion of the LA rhythm and advanced the acrophase by 9 h. Similarly, activity onset and offset were significantly advanced. All together, these results demonstrate that the Ta-cycle is a strong zeitgeber, able to entrain the camel LA rhythm, hence corroborating previous results concerning the Ta non-photic synchronization of the circadian master clock.


Assuntos
Camelus/fisiologia , Ritmo Circadiano/fisiologia , Locomoção/fisiologia , Animais , Relógios Circadianos , Interpretação Estatística de Dados , Feminino , Fotoperíodo , Temperatura
8.
J Pineal Res ; 68(3): e12634, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32011000

RESUMO

In desert areas, mammals such as camel and goat are exposed to harsh environmental conditions. The ambient temperature (Ta) cycles have been shown to entrain the circadian clock in the camel. In the present work, we assumed that, in the goat living in a desert biotope, Ta cycles would have the same synchronizing effect on the central clock. Therefore, the effects of Ta cycles on body temperature (Tb), locomotor activity (LA) and melatonin (Mel) rhythms as outputs of the master circadian clock have been studied. The study was performed on bucks kept first under constant conditions of total darkness (DD) and constant Ta, then maintained under DD conditions but exposed to Ta cycles with heat period during subjective day and cold period during subjective night. Finally, the Ta cycles were reversed with highest temperatures during the subjective night and the lowest temperatures during the subjective day. Under constant conditions, the circadian rhythms of Tb and LA were free running with an endogenous period of 25.3 and 25.0 hours, respectively. Ta cycles entrained the rhythms of Tb and LA to a period of exactly 24.0 hours; while when reversed, the Ta cycles led to an inversion of Tb and LA rhythms. Similarly, Ta cycles were also able to entrain Mel rhythm, by adjusting its secretion to the cooling phase before and after Ta cycles inversion. All together, these results show that the Ta cycles entrain the master circadian clock in the goat.


Assuntos
Temperatura Corporal/fisiologia , Relógios Circadianos/fisiologia , Cabras/fisiologia , Locomoção/fisiologia , Melatonina/metabolismo , Animais , Comportamento Animal , Clima , Masculino , Temperatura
9.
Chronobiol Int ; 36(8): 1047-1057, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31088178

RESUMO

Daily pattern of locomotor activity (LA), one of the most studied rhythms in humans and rodents, has not been widely investigated in large mammals. This is partly due to the high cost and breakability of used automatic devices. Since last decade, smartphones are becoming ubiquitous. Meanwhile, several applications detecting activity by using internal sensors were made available. In this study, we assumed that this device could be a cheaper and easier way to measure the LA rhythm in humans and large mammals, like camel and goat. A smartphone application (Nokia Mate Health), normally used to quantify physical activities in humans, was chosen for the study. To validate the rhythm data obtained from the smartphone, LA rhythm was simultaneously recorded using an automatic device, the Actiwatch-Mini®. Results showed that the smartphone provided a clear and significant daily rhythm of LA. The visual assessment of the superimposed LA rhythm's curves in all three species showed that the smartphone application displayed similar rhythms as those recorded by the Actiwatch-Mini. Highly significant positive correlation (p≤ 0.0001) exists between the two recording rhythms. The daily periods were both the same at 24.0 h. Acrophases were also significantly similar and occurring around mid-day: 11:40 ± 0.35 h vs 11:41 ± 0.35 h for the camel, 11:25 ± 0.19 h vs 11:37 ± 0.25 h for the goat and 13:04 ± 0.11 h vs 13:51 ± 0.28 h for humans using smartphone and Actiwatch, respectively. The related mesor and amplitude were also close between the two recording devices. Results indicate clearly that using smartphones constitutes a reliable cheap tool to study LA rhythm for chronobiology studies, especially in laboratories facing lack of funding.


Assuntos
Camelus/fisiologia , Ritmo Circadiano/fisiologia , Cabras/fisiologia , Locomoção/fisiologia , Smartphone , Software , Animais , Feminino , Humanos , Masculino
10.
J Pineal Res ; 67(1): e12575, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30937953

RESUMO

Melatonin (MLT) exerts its physiological effects principally through two high-affinity membrane receptors MT1 and MT2. Understanding the exact mechanism of MLT action necessitates the use of highly selective agonists/antagonists to stimulate/inhibit a given MLT receptor. The respective distribution of MT1 and MT2 within the CNS and elsewhere is controversial, and here we used a "knock-in" strategy replacing MT1 or MT2 coding sequences with a LacZ reporter. The data show striking differences in the distribution of MT1 and MT2 receptors in the mouse brain: whereas the MT1 subtype was expressed in very few structures (notably including the suprachiasmatic nucleus and pars tuberalis), MT2 subtype receptors were identified within numerous brain regions including the olfactory bulb, forebrain, hippocampus, amygdala and superior colliculus. Co-expression of the two subtypes was observed in very few structures, and even within these areas they were rarely present in the same individual cell. In conclusion, the expression and distribution of MT2 receptors are much more widespread than previously thought, and there is virtually no correspondence between MT1 and MT2 cellular expression. The precise phenotyping of cells/neurons containing MT1 or MT2 receptor subtypes opens new perspectives for the characterization of links between MLT brain targets, MLT actions and specific MLT receptor subtypes.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Melatonina/metabolismo , Receptor MT1 de Melatonina/biossíntese , Receptor MT2 de Melatonina/biossíntese , Animais , Encéfalo/citologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Knockout , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genética
11.
J Biol Rhythms ; 33(6): 626-636, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30189779

RESUMO

Syrian hamsters may present 2 types of torpor when exposed to ambient temperatures in the winter season, from 8°C to 22°C (short photoperiod). The first is daily torpor, which is controlled by the master circadian clock of the body, located in the SCN. In this paper, we show that daily torpor bout duration is unchanged over the 8°C to 22°C temperature range, as predicted from the thermal compensation of circadian clocks. These findings contrast with the second type of torpor: multi-day torpor or classic hibernation. In multi-day torpor, bout duration increases as temperature decreases, following Arrhenius thermodynamics. We found no evidence of hysteresis from metabolic inhibition and the process was thus reversible. As a confirmation, at any temperature, the arousal from multi-day torpor occurred at about the same subjective time given by this temperature-dependent clock. The temperature-dependent clock controls the reduced torpor metabolic rate while providing a reversible recovery of circadian synchronization on return to euthermy.


Assuntos
Relógios Circadianos/fisiologia , Hibernação/fisiologia , Estações do Ano , Temperatura , Torpor/fisiologia , Animais , Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Cricetinae , Hipotermia , Masculino , Fotoperíodo
12.
Chronobiol Int ; 35(12): 1735-1741, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30036106

RESUMO

BACKGROUND: Propofol anesthesia triggers phase-advances of circadian rhythms controlled by the suprachiasmatic nuclei (SCN), the master clock. Besides, inhalational anesthesia has been associated with a subsequent reduction of Per2 mRNA levels in the whole brain of rodents. The acute effects of propofol anesthesia per se on the SCN molecular clockwork remain unclear. Here we aim to study the expression of Per1 and Per2 clock genes in the SCN of rats exposed to constant darkness after a single dose of propofol. METHODS: Thirty 2-months old rats were randomly divided into 2 groups receiving a single dose of either 120 mg/kg propofol 1% (n=15), or intralipid® 10% (n=15) in late day (projected circadian time (CT) 10, i.e., 10h after the expected time of lights on). Thereafter, rat brains were sampled in darkness 1h, 2h or 3h after the treatment (projected CT11, CT12 or CT13). Expression of Per1 and Per2 mRNA was analyzed by in situ hybridization in SCN coronal sections. RESULTS: Per1 expression was affected by time and treatment. Per1 expression in the SCN after propofol treatment decreased at CT11 and CT12 when compared to the vehicle group. For Per2 expression, we observed only a treatment effect. Observed in dark conditions without hypothermia or/and concomitant surgery, such down-regulation of clock genes Per is only correlated to propofol treatment. This may explain "jet-lag-like" symptoms described by patients after anesthesia. CONCLUSION: We show here for the first time that short-term propofol anesthesia leads to a transient down-regulation of Per1 and Per2 expression in the SCN.


Assuntos
Anestesia , Ritmo Circadiano/fisiologia , Regulação para Baixo/fisiologia , Propofol/farmacologia , Anestesia/efeitos adversos , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/fisiologia , Expressão Gênica/fisiologia , Masculino , Proteínas Circadianas Period/metabolismo , RNA Mensageiro/metabolismo , Ratos , Núcleo Supraquiasmático/metabolismo , Fatores de Transcrição/metabolismo
13.
J Biol Rhythms ; 33(3): 302-317, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29618281

RESUMO

Adaptation of biological rhythms to a seasonal environment in circannual mammals is achieved via the synchronization of intrinsic circannual rhythms to the external year by photoperiod. In mammals, the photoperiodic information is integrated to seasonal physiology via the pineal hormone melatonin regulation of pars tuberalis (PT) TSHß expression and its downstream control of hypothalamic dio2 gene expression. In the circannual European hamster, however, photoperiodic entrainment of the circannual clock is possible in pinealectomized animals. The present study explores whether the TSHß expression in the PT and the downstream hypothalamic pathways are regulated by photoperiod in European hamsters in the absence of melatonin. All animals were kept on an accelerated photoperiodic regime, which compressed the natural year to a 6-month cycle. Sham-operated European hamsters and half of the pinealectomized European hamsters entrained their annual cycle in reproduction, body weight, and activity pattern to this cycle, whereas the other half of the pinealectomized animals followed only each second cycle. In all animals, PT TSHß and hypothalamic dio2 expressions were higher in hamsters displaying a summer physiological state than in those in winter state. Moreover, in agreement with their seasonal state, reproductive animals (summer state) showed higher expression of rfrp and lower expression of kiss1-genes encoding central regulators of the reproductive axis-than those animals in reproductive quiescence (winter state), indicating the hypothalamic integration of the photoperiodic signal even in pinealectomized animals. The appropriate occurrence of a well-characterized activity pattern indicative of a so-called sensitive phase to short photoperiod suggested that the SCN constructs the melatonin-independent photoperiodic message. This message is sufficient to entrain the circannual rhythm in TSHß expression in the PT and the downstream hypothalamic neuroendocrine pathway through a yet unknown pathway. These results reinforce the hypothesis that the PT is the site for the integration of circannual and photoperiodic information.


Assuntos
Ritmo Circadiano , Fotoperíodo , Estações do Ano , Tireotropina Subunidade beta/genética , Animais , Cricetinae , Masculino , Melatonina/metabolismo , Glândula Pineal/metabolismo
14.
Front Vet Sci ; 5: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29594158

RESUMO

To examine a possible control of reproductive seasonality by melatonin, continual-release subcutaneous melatonin implants were inserted 4.5 months before the natural breeding season (October-April) into female camels (Melatonin-treated group). The animals were exposed to an artificial long photoperiod (16L:8D) for 41 days prior to implant placement to facilitate receptivity to the short-day signal that is expected with melatonin implants. The treated and control groups (untreated females) were maintained separately under outdoor natural conditions. Ovarian follicular development was monitored in both groups by transrectal ultrasonography and by plasma estradiol-17ß concentrations performed weekly for 8 weeks and then for 14 weeks following implant insertion. Plasma prolactin concentrations were determined at 45 and 15 days before and 0, 14, 28, 56, and 98 days after implant insertion. Plasma melatonin concentration was determined to validate response to the artificial long photoperiod and to verify the pattern of release from the implants. Results showed that the artificial long photoperiod induced a melatonin secretion peak of significantly (P < 0.05) shorter duration (about 2.5 h). Melatonin release from the implants resulted in higher circulating plasma melatonin levels during daytime and nighttime which persisted for more than 12 weeks following implants insertion. Treatment with melatonin implants advanced the onset of follicular growth activity by 3.5 months compared to untreated animals. Plasma estradiol-17ß increased gradually from the second week after the beginning of treatment to reach significantly (P < 0.01) higher concentrations (39.2 ± 6.2 to 46.4 ± 4.5 pg/ml) between the third and the fifth week post insertion of melatonin implants. Treatment with melatonin implants also induced a moderate, but significant (P < 0.05) suppressive effect on plasma prolactin concentration on the 28th day. These results demonstrate that photoperiod appears to be involved in dromedary reproductive seasonality. Melatonin implants may be a useful tool to manipulate seasonality and to improve reproductive performance in this species. Administration of subcutaneous melatonin implants during the transition period to the breeding season following an artificial signal of long photoperiod have the potential to advance the breeding season in camels by about 2.5 months.

15.
Brain Res ; 1679: 116-124, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29196219

RESUMO

Reciprocal interactions closely connect energy metabolism with circadian rhythmicity. Altered clockwork and circadian desynchronization are often linked with impaired energy regulation. Conversely, metabolic disturbances have been associated with altered autonomic and hormonal rhythms. The effects of high-energy (HE) diet on the master clock in the suprachiasmatic nuclei (SCN) remain unclear.This question was addressed in the Sand rat (Psammomys obesus), a non-insulin-dependent diabetes mellitus (NIDDM) animal model. The aim of this work was to determine whether enriched diet in Psammomys affects locomotor activity rhythm, as well as daily oscillations in the master clock of the SCN and in an extra-SCN brain oscillator, the piriform cortex. Sand rats were fed during 3 months with either low or HE diet. Vasoactive intestinal peptide (VIP), vasopressin (AVP) and CLOCK protein cycling were studied by immunohistochemistry and running wheel protocol was used for behavioral analysis. High energy feeding dietary triggered hyperinsulinemia, impaired insulin/glucose ratio and disruption in pancreatic hormonal rhythms. Circadian disturbances in hyper-insulinemic animals include a lengthened rest/activity rhythm in constant darkness, as well as disappearance of daily rhythmicity of VIP, AVP and the circadian transcription factor CLOCK within the suprachiasmatic clock. In addition, daily rhythmicity of VIP and CLOCK was abolished by HE diet in a secondary brain oscillator, the piriform cortex. Our findings highlight a major impact of diabetogenic diet on central and peripheral rhythmicity. The Psammomys model will be instrumental to better understand the functional links between circadian clocks, glucose intolerance and insulin resistance state.


Assuntos
Relógios Biológicos/fisiologia , Encéfalo/fisiologia , Proteínas CLOCK/metabolismo , Dieta , Regulação da Expressão Gênica/fisiologia , Resistência à Insulina/fisiologia , Animais , Peso Corporal , Encéfalo/efeitos dos fármacos , Gorduras na Dieta/administração & dosagem , Fibras na Dieta/administração & dosagem , Ingestão de Alimentos/fisiologia , Gerbillinae , Somatostatina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Vasopressinas/metabolismo
16.
Endocrinol Diabetes Metab ; 1(4): e00039, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30815567

RESUMO

BACKGROUND: Melatonin is a hormone synthesized mainly by the pineal gland, and secreted only at night. Melatonin has been proposed as a modulator of glucose metabolism. METHODS: Here we studied the metabolic effects of melatonin administration alone (s.c. 10 mg/kg) or in combination with metformin (p.o. 300 mg/kg), a widely used anti-diabetic drug. These treatments were tested on glucose tolerance, insulin sensitivity and food intake in Zucker fatty rats (i.e., bearing a missense mutation in the leptin receptor gene) and high-fat fed Sprague-Dawley rats. RESULTS: Melatonin alone or in combination did not significantly modify glucose tolerance in either model. Melatonin alone in high-fat fed Sprague-Dawley improved insulin sensitivity to the level of metformin. In addition, combined treatment further ameliorated insulin sensitivity (+13%), especially during the late phase of rising glycemia. The lack of similar effects in Zucker rats suggests an involvement of leptin signaling in mediating the positive effects of melatonin. Body mass gain in Sprague-Dawley rats was decreased by both metformin, and combined metformin and melatonin. While melatonin alone did not markedly affect food intake, its combination with metformin led to a more pronounced anorexia (-17% food intake during the last week), as compared to metformin alone. CONCLUSIONS: Melatonin improves the beneficial effects of metformin on insulin sensitivity and body mass gain in high-fat fed Sprague-Dawley rats. Therefore, the combination of melatonin and metformin could be beneficial to develop dual therapies to treat or delay type 2 diabetes associated with obesity.

17.
Front Neuroanat ; 11: 103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29249943

RESUMO

In mammals, biological rhythms are driven by a master circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Recently, we have demonstrated that in the camel, the daily cycle of environmental temperature is able to entrain the master clock. This raises several questions about the structure and function of the SCN in this species. The current work is the first neuroanatomical investigation of the camel SCN. We carried out a cartography and cytoarchitectural study of the nucleus and then studied its cell types and chemical neuroanatomy. Relevant neuropeptides involved in the circadian system were investigated, including arginine-vasopressin (AVP), vasoactive intestinal polypeptide (VIP), met-enkephalin (Met-Enk), neuropeptide Y (NPY), as well as oxytocin (OT). The neurotransmitter serotonin (5-HT) and the enzymes tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) were also studied. The camel SCN is a large and elongated nucleus, extending rostrocaudally for 9.55 ± 0.10 mm. Based on histological and immunofluorescence findings, we subdivided the camel SCN into rostral/preoptic (rSCN), middle/main body (mSCN) and caudal/retrochiasmatic (cSCN) divisions. Among mammals, the rSCN is unusual and appears as an assembly of neurons that protrudes from the main mass of the hypothalamus. The mSCN exhibits the triangular shape described in rodents, while the cSCN is located in the retrochiasmatic area. As expected, VIP-immunoreactive (ir) neurons were observed in the ventral part of mSCN. AVP-ir neurons were located in the rSCN and mSCN. Results also showed the presence of OT-ir and TH-ir neurons which seem to be a peculiarity of the camel SCN. OT-ir neurons were either scattered or gathered in one isolated cluster, while TH-ir neurons constituted two defined populations, dorsal parvicellular and ventral magnocellular neurons, respectively. TH colocalized with VIP in some rSCN neurons. Moreover, a high density of Met-Enk-ir, 5-HT-ir and NPY-ir fibers were observed within the SCN. Both the cytoarchitecture and the distribution of neuropeptides are unusual in the camel SCN as compared to other mammals. The presence of OT and TH in the camel SCN suggests their role in the modulation of circadian rhythms and the adaptation to photic and non-photic cues under desert conditions.

18.
PLoS One ; 12(7): e0179061, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28759564

RESUMO

Cone photoreceptors are required for color vision and high acuity vision, and they die in a variety of retinal degenerations, leading to irreversible vision loss and reduced quality of life. To date, there are no approved therapies that promote the health and survival of cones. The development of novel treatments targeting cones has been challenging and impeded, in part, by the limitations inherent in using common rodent model organisms, which are nocturnal and rod-dominant, to study cone biology. The African Nile grass rat (Arvicanthis ansorgei), a diurnal animal whose photoreceptor population is more than 30% cones, offers significant potential as a model organism for the study of cone development, biology, and degeneration. However, a significant limitation in using the A. ansorgei retina for molecular studies is that A. ansorgei does not have a sequenced genome or transcriptome. Here we present the first de novo assembled and functionally annotated transcriptome for A. ansorgei. We performed RNA sequencing for A. ansorgei whole retina to a depth of 321 million pairs of reads and assembled 400,584 Trinity transcripts. Transcriptome-wide analyses and annotations suggest that our data set confers nearly full length coverage for the majority of retinal transcripts. Our high quality annotated transcriptome is publicly available, and we hope it will facilitate wider usage of A. ansorgei as a model organism for molecular studies of cone biology and retinal degeneration.


Assuntos
Murinae/fisiologia , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Transcriptoma , Animais , DNA Complementar/metabolismo , Feminino , Biblioteca Gênica , Fases de Leitura Aberta , Filogenia , Retina/fisiopatologia , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Opsinas de Bastonetes/genética , Análise de Sequência de DNA , Análise de Sequência de RNA
20.
Sci Rep ; 6: 29386, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27380954

RESUMO

Foraging is costly in terms of time and energy. An endogenous food-entrainable system allows anticipation of predictable changes of food resources in nature. Yet the molecular mechanism that controls food anticipation in mammals remains elusive. Here we report that deletion of the clock component Rev-erbα impairs food entrainment in mice. Rev-erbα global knockout (GKO) mice subjected to restricted feeding showed reduced elevations of locomotor activity and body temperature prior to mealtime, regardless of the lighting conditions. The failure to properly anticipate food arrival was accompanied by a lack of phase-adjustment to mealtime of the clock protein PERIOD2 in the cerebellum, and by diminished expression of phosphorylated ERK 1/2 (p-ERK) during mealtime in the mediobasal hypothalamus and cerebellum. Furthermore, brain-specific knockout (BKO) mice for Rev-erbα display a defective suprachiasmatic clock, as evidenced by blunted daily activity under a light-dark cycle, altered free-running rhythm in constant darkness and impaired clock gene expression. Notably, brain deletion of Rev-erbα totally prevented food-anticipatory behaviour and thermogenesis. In response to restricted feeding, brain deletion of Rev-erbα impaired changes in clock gene expression in the hippocampus and cerebellum, but not in the liver. Our findings indicate that Rev-erbα is required for neural network-based prediction of food availability.


Assuntos
Encéfalo/metabolismo , Ritmo Circadiano , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Antecipação Psicológica , Temperatura Corporal , Comportamento Alimentar , Locomoção , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Fotoperíodo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA