Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(2): 102126, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33659884

RESUMO

L-lactate has energetic and signaling properties, and its availability is modulated by activity-dependent stimuli, which also regulate adult hippocampal neurogenesis. Studying the effects of L-lactate on neural precursor cells (NPCs) in vitro, we found that L-lactate is pro-proliferative and that this effect is dependent on the active lactate transport by monocarboxylate transporters. Increased proliferation was not linked to amplified mitochondrial respiration. Instead, L-lactate deviated glucose metabolism to the pentose phosphate pathway, indicated by increased glucose-6-phosphate dehydrogenase activity while glycolysis decreased. Knockout of Hcar1 revealed that the pro-proliferative effect of L-lactate was not dependent on receptor activity although phosphorylation of ERK1/2 and Akt was increased following L-lactate treatment. Together, we show that availability of L-lactate is linked to the proliferative potential of NPCs and add evidence to the hypothesis that lactate influences cellular homeostatic processes in the adult brain, specifically in the context of adult hippocampal neurogenesis.

2.
Mol Metab ; 30: 1-15, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767163

RESUMO

OBJECTIVE: In familial hypercholesterolemia (FH), mutations in the low-density lipoprotein (LDL) receptor (LDLr) gene result in increased plasma LDL cholesterol. Clinical and preclinical studies have revealed an association between FH and hippocampus-related memory and mood impairment. We here asked whether hippocampal pathology in FH might be a consequence of compromised adult hippocampal neurogenesis. METHODS: We evaluated hippocampus-dependent behavior and neurogenesis in adult C57BL/6JRj and LDLr-/- mice. We investigated the effects of elevated cholesterol and the function of LDLr in neural precursor cells (NPC) isolated from adult C57BL/6JRj mice in vitro. RESULTS: Behavioral tests revealed that adult LDLr-/- mice showed reduced performance in a dentate gyrus (DG)-dependent metric change task. This phenotype was accompanied by a reduction in cell proliferation and adult neurogenesis in the DG of LDLr-/- mice, suggesting a potential direct impact of LDLr mutation on NPC. Exposure of NPC to LDL as well as LDLr gene knockdown reduced proliferation and disrupted transcriptional activity of genes involved in endogenous cholesterol synthesis and metabolism. The LDL treatment also induced an increase in intracellular lipid storage. Functional analysis of differentially expressed genes revealed parallel modulation of distinct regulatory networks upon LDL treatment and LDLr knockdown. CONCLUSIONS: Together, these results suggest that high LDL levels and a loss of LDLr function, which are characteristic to individuals with FH, might contribute to a disease-related impairment in adult hippocampal neurogenesis and, consequently, cognitive functions.


Assuntos
Hipocampo/metabolismo , Hiperlipoproteinemia Tipo II/metabolismo , Receptores de LDL/metabolismo , Animais , Colesterol/metabolismo , LDL-Colesterol/sangue , Hipercolesterolemia , Hiperlipoproteinemia Tipo II/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Fenótipo , Receptores de LDL/genética
3.
Stem Cell Reports ; 12(6): 1298-1312, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31130358

RESUMO

Physical exercise stimulates adult hippocampal neurogenesis and is considered a relevant strategy for preventing age-related cognitive decline in humans. The underlying mechanisms remains controversial. Here, we show that exercise increases proliferation of neural precursor cells (NPCs) of the mouse dentate gyrus (DG) via downregulation of microRNA 135a-5p (miR-135a). MiR-135a inhibition stimulates NPC proliferation leading to increased neurogenesis, but not astrogliogenesis, in DG of resting mice, and intriguingly it re-activates NPC proliferation in aged mice. We identify 17 proteins (11 putative targets) modulated by miR-135 in NPCs. Of note, inositol 1,4,5-trisphosphate (IP3) receptor 1 and inositol polyphosphate-4-phosphatase type I are among the modulated proteins, suggesting that IP3 signaling may act downstream miR-135. miR-135 is the first noncoding RNA essential modulator of the brain's response to physical exercise. Prospectively, the miR-135-IP3 axis might represent a novel target of therapeutic intervention to prevent pathological brain aging.


Assuntos
Células-Tronco Adultas/metabolismo , Envelhecimento/metabolismo , MicroRNAs/biossíntese , Células-Tronco Neurais/metabolismo , Neurogênese , Condicionamento Físico Animal , Animais , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Camundongos , Camundongos Knockout , Nicho de Células-Tronco , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese
4.
Stem Cells ; 33(1): 253-64, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25205248

RESUMO

Nerve cells are continuously generated from stem cells in the adult mammalian subventricular zone (SVZ) and hippocampal dentate gyrus. We have previously noted that stem/progenitor cells in the SVZ and the subgranular layer (SGL) of the dentate gyrus express high levels of plasma membrane-bound nucleoside triphosphate diphosphohydrolase 2 (NTPDase2), an ectoenzyme that hydrolyzes extracellular nucleoside diphosphates and triphosphates. We inferred that deletion of NTPDase2 would increase local extracellular nucleoside triphosphate concentrations perturbing purinergic signaling and boosting progenitor cell proliferation and neurogenesis. Using newly generated mice globally null for Entpd2, we demonstrate that NTPDase2 is the major ectonucleotidase in these progenitor cell-rich areas. Using BrdU-labeling protocols, we have measured stem cell proliferation and determined long-term survival of cell progeny under basal conditions. Brains of Entpd2 null mice revealed increased progenitor cell proliferation in both the SVZ and the SGL. However, this occurred without noteworthy alterations in long-term progeny survival. The hippocampal stem cell pool and the pool of the intermediate progenitor type-2 cells clearly expanded. However, substantive proportions of these proliferating cells were lost during expansion at around type-3 stage. Cell loss was paralleled by decreases in cAMP response element-binding protein phosphorylation in the doublecortin-positive progenitor cell population and by an increase in labeling for activated caspase-3 levels. We propose that NTPDase2 has functionality in scavenging mitogenic extracellular nucleoside triphosphates in neurogenic niches of the adult brain, thereby acting as a homeostatic regulator of nucleotide-mediated neural progenitor cell proliferation and expansion.


Assuntos
Adenosina Trifosfatases/metabolismo , Encéfalo/citologia , Células-Tronco Neurais/citologia , Nicho de Células-Tronco/fisiologia , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Proliferação de Células/fisiologia , Imuno-Histoquímica , Camundongos , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA