Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012563

RESUMO

The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (n = 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents' intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta2O5-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta2O5-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment.

2.
IEEE Trans Biomed Eng ; 71(8): 2300-2310, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38748530

RESUMO

OBJECTIVE: The key characteristics of light propagation are the average penetration depth, average maximum penetration depth, average maximum lateral spread, and average path length of photons. These parameters depend on tissue optical properties and, thus, on the pathological state of the tissue. Hence, they could provide diagnostic information on tissue integrity. This study investigates these parameters for articular cartilage which has a complex structure. METHODS: We utilize Monte Carlo simulation to simulate photon trajectories in articular cartilage and estimate the average values of the light propagation parameters (penetration depth, maximum penetration depth, maximum lateral spread, and path length) in the spectral band of 400-1400 nm based on the optical properties of articular cartilage zonal layers and bulk tissue. RESULTS: Our findings suggest that photons in the visible band probe a localized small volume of articular cartilage superficial and middle zones, while those in the NIR band penetrate deeper into the tissue and have larger lateral spread. In addition, we demonstrate that a simple model of articular cartilage tissue, based on the optical properties of the bulk tissue, is capable to provide an accurate description of the light-tissue interaction in articular cartilage. CONCLUSION: The results indicate that as the photons in the spectral band of 400-1400 nm can reach the full depth of articular cartilage matrix, they can provide viable information on its pathological state. Therefore, diffuse optical spectroscopy holds significant importance for objectively assessing articular cartilage health. SIGNIFICANCE: In this study, for the first time, we estimate the light propagation parameters in articular cartilage.


Assuntos
Cartilagem Articular , Método de Monte Carlo , Fótons , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/química , Cartilagem Articular/fisiologia , Simulação por Computador , Humanos , Modelos Biológicos , Espalhamento de Radiação , Luz
3.
J Orthop Res ; 42(2): 415-424, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37593815

RESUMO

Cartilage and synovial fluid are challenging to observe separately in native computed tomography (CT). We report the use of triple contrast agent (bismuth nanoparticles [BiNPs], CA4+, and gadoteridol) to image and segment cartilage in cadaveric knee joints with a clinical CT scanner. We hypothesize that BiNPs will remain in synovial fluid while the CA4+ and gadoteridol will diffuse into cartilage, allowing (1) segmentation of cartilage, and (2) evaluation of cartilage biomechanical properties based on contrast agent concentrations. To investigate these hypotheses, triple contrast agent was injected into both knee joints of a cadaver (N = 1), imaged with a clinical CT at multiple timepoints during the contrast agent diffusion. Knee joints were extracted, imaged with micro-CT (µCT), and biomechanical properties of the cartilage surface were determined by stress-relaxation mapping. Cartilage was segmented and contrast agent concentrations (CA4+ and gadoteridol) were compared with the biomechanical properties at multiple locations (n = 185). Spearman's correlation between cartilage thickness from clinical CT and reference µCT images verifies successful and reliable segmentation. CA4+ concentration is significantly higher in femoral than in tibial cartilage at 60 min and further timepoints, which corresponds to the higher Young's modulus observed in femoral cartilage. In this pilot study, we show that (1) large BiNPs do not diffuse into cartilage, facilitating straightforward segmentation of human knee joint cartilage in a clinical setting, and (2) CA4+ concentration in cartilage reflects the biomechanical differences between femoral and tibial cartilage. Thus, the triple contrast agent CT shows potential in cartilage morphology and condition estimation in clinical CT.


Assuntos
Cartilagem Articular , Meios de Contraste , Humanos , Estudo de Prova de Conceito , Projetos Piloto , Tomografia Computadorizada por Raios X/métodos , Articulação do Joelho/diagnóstico por imagem
4.
J Biomed Opt ; 28(12): 125003, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094709

RESUMO

Significance: Articular cartilage exhibits a zonal architecture, comprising three distinct zones: superficial, middle, and deep. Collagen fibers, being the main solid constituent of articular cartilage, exhibit unique angular and size distribution in articular cartilage zones. There is a gap in knowledge on how the unique properties of collagen fibers across articular cartilage zones affect the scattering properties of the tissue. Aim: This study hypothesizes that the structural properties of articular cartilage zones affect its scattering parameters. We provide scattering coefficient and scattering anisotropy factor of articular cartilage zones in the spectral band of 400 to 1400 nm. We enumerate the differences and similarities of the scattering properties of articular cartilage zones and provide reasoning for these observations. Approach: We utilized collimated transmittance and integrating sphere measurements to estimate the scattering coefficients of bovine articular cartilage zones and bulk tissue. We used the relationship between the scattering coefficients to estimate the scattering anisotropy factor. Polarized light microscopy was applied to estimate the depth-wise angular distribution of collagen fibers in bovine articular cartilage. Results: We report that the Rayleigh scatterers contribution to the scattering coefficients, the intensity of the light scattered by the Rayleigh and Mie scatterers, and the angular distribution of collagen fibers across tissue depth are the key parameters that affect the scattering properties of articular cartilage zones and bulk tissue. Our results indicate that in the short visible region, the superficial and middle zones of articular cartilage affect the scattering properties of the tissue, whereas in the far visible and near-infrared regions, the articular cartilage deep zone determines articular cartilage scattering properties. Conclusion: This study provides scattering properties of articular cartilage zones. Such findings support future research to utilize optical simulation to estimate the penetration depth, depth-origin, and pathlength of light in articular cartilage for optical diagnosis of the tissue.


Assuntos
Cartilagem Articular , Colágeno , Animais , Bovinos , Colágeno/química , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/química , Matriz Extracelular/química , Microscopia de Polarização , Anisotropia
5.
Biomed Opt Express ; 14(7): 3397-3412, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497494

RESUMO

There is increasing research on the potential application of diffuse optical spectroscopy and hyperspectral imaging for characterizing the health of the connective tissues, such as articular cartilage, during joint surgery. These optical techniques facilitate the rapid and objective diagnostic assessment of the tissue, thus providing unprecedented information toward optimal treatment strategy. Adaption of optical techniques for diagnostic assessment of musculoskeletal disorders, including osteoarthritis, requires precise determination of the optical properties of connective tissues such as articular cartilage. As every indirect method of tissue optical properties estimation consists of a measurement step followed by a computational analysis step, there are parameters associated with these steps that could influence the estimated values of the optical properties. In this study, we report the absorption and reduced scattering coefficients of articular cartilage in the spectral band of 400-1400 nm. We assess the impact of the experimental setup parameters, including surrounding medium, sample volume, and scattering anisotropy factor on the reported optical properties. Our results suggest that the absorption coefficient of articular cartilage is sensitive to the variation in the surrounding medium, whereas its reduced scattering coefficient is invariant to the experimental setup parameters.

6.
Sci Rep ; 11(1): 5556, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692379

RESUMO

Photon-counting detector computed tomography (PCD-CT) is a modern spectral imaging technique utilizing photon-counting detectors (PCDs). PCDs detect individual photons and classify them into fixed energy bins, thus enabling energy selective imaging, contrary to energy integrating detectors that detects and sums the total energy from all photons during acquisition. The structure and composition of the articular cartilage cannot be detected with native CT imaging but can be assessed using contrast-enhancement. Spectral imaging allows simultaneous decomposition of multiple contrast agents, which can be used to target and highlight discrete cartilage properties. Here we report, for the first time, the use of PCD-CT to quantify a cationic iodinated CA4+ (targeting proteoglycans) and a non-ionic gadolinium-based gadoteridol (reflecting water content) contrast agents inside human osteochondral tissue (n = 53). We performed PCD-CT scanning at diffusion equilibrium and compared the results against reference data of biomechanical and optical density measurements, and Mankin scoring. PCD-CT enables simultaneous quantification of the two contrast agent concentrations inside cartilage and the results correlate with the structural and functional reference parameters. With improved soft tissue contrast and assessment of proteoglycan and water contents, PCD-CT with the dual contrast agent method is of potential use for the detection and monitoring of osteoarthritis.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Idoso , Feminino , Humanos , Masculino , Intensificação de Imagem Radiográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA