Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Am Thorac Soc ; 20(10): 1465-1474, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37478340

RESUMO

Rationale: Right ventricular (RV) dysfunction is common among patients hospitalized with coronavirus disease (COVID-19); however, its epidemiology may depend on the echocardiographic parameters used to define it. Objectives: To evaluate the prevalence of abnormalities in three common echocardiographic parameters of RV function among patients with COVID-19 admitted to the intensive care unit (ICU), as well as the effect of RV dilatation on differential parameter abnormality and the association of RV dysfunction with 60-day mortality. Methods: We conducted a retrospective cohort study of ICU patients with COVID-19 between March 4, 2020, and March 4, 2021, who received a transthoracic echocardiogram within 48 hours before to at most 7 days after ICU admission. RV dysfunction and dilatation, respectively, were defined by guideline thresholds for tricuspid annular plane systolic excursion (TAPSE), RV fractional area change, RV free wall longitudinal strain (RVFWS), and RV basal dimension or RV end-diastolic area. Association of RV dysfunction with 60-day mortality was assessed through logistic regression adjusting for age, prior history of congestive heart failure, invasive ventilation at the time of transthoracic echocardiogram, and Acute Physiology and Chronic Health Evaluation II score. Results: A total of 116 patients were included, of whom 69% had RV dysfunction by one or more parameters, and 36.3% of these had RV dilatation. The three most common patterns of RV dysfunction were the presence of three abnormalities, the combination of abnormal RVFWS and TAPSE, and isolated TAPSE abnormality. Patients with RV dilatation had worse RV fractional area change (24% vs. 36%; P = 0.001), worse RVFWS (16.3% vs. 19.1%; P = 0.005), higher RV systolic pressure (45 mm Hg vs. 31 mm Hg; P = 0.001) but similar TAPSE (13 mm vs. 13 mm; P = 0.30) compared with those with normal RV size. After multivariable adjustment, 60-day mortality was significantly associated with RV dysfunction (odds ratio, 2.91; 95% confidence interval, 1.01-9.44), as was the presence of at least two parameter abnormalities. Conclusions: ICU patients with COVID-19 had significant heterogeneity in RV function abnormalities present with different patterns associated with RV dilatation. RV dysfunction by any parameter was associated with increased mortality. Therefore, a multiparameter evaluation may be critical in recognizing RV dysfunction in COVID-19.


Assuntos
COVID-19 , Disfunção Ventricular Direita , Humanos , Estudos Retrospectivos , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/epidemiologia , COVID-19/complicações , Ecocardiografia/métodos , Unidades de Terapia Intensiva , Função Ventricular Direita
2.
Handb Exp Pharmacol ; 277: 367-384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36376705

RESUMO

Critical illness is associated with dramatic changes in metabolism driven by immune, endocrine, and adrenergic mediators. These changes involve early activation of catabolic processes leading to increased energetic substrate availability; later on, they are followed by a hypometabolic phase characterized by deranged mitochondrial function. In sepsis and ARDS, these rapid clinical changes are reflected in metabolomic profiles of plasma and other fluids, suggesting that metabolomics could one day be used to assist in the diagnosis and prognostication of these syndromes. Some metabolites, such as lactate, are already in clinical use and define patients with septic shock, a high-mortality subtype of sepsis. Larger-scale metabolomic profiling may ultimately offer a tool to identify subgroups of critically ill patients who may respond to therapy, but further work is needed before this type of precision medicine is readily employed in the clinical setting.


Assuntos
Sepse , Choque Séptico , Humanos , Estado Terminal , Sepse/diagnóstico , Sepse/terapia , Metabolômica
3.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35730564

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e., resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percentages of solids and protein content were greatly elevated in COVID-19 compared with heathy control samples and closely resembled levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) were major components of respiratory secretions in COVID-19 and were likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors, with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observed increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factor-stimulated gene-6 staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicated that increases in HA and DNA in COVID-19 respiratory secretion samples correlated with enhanced inflammatory burden and suggested that DNA and HA may be viable therapeutic targets in COVID-19 infection.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Pulmão , SARS-CoV-2 , Escarro
4.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35499083

RESUMO

BACKGROUNDHyaluronan (HA), an extracellular matrix glycosaminoglycan, has been implicated in the pathophysiology of COVID-19 infection, pulmonary hypertension, pulmonary fibrosis, and other diseases, but is not targeted by any approved drugs. We asked whether hymecromone (4-methylumbelliferone [4-MU]), an oral drug approved in Europe for biliary spasm treatment that also inhibits HA in vitro and in animal models, could be repurposed as an inhibitor of HA synthesis in humans.METHODSWe conducted an open-label, single-center, dose-response study of hymecromone in healthy adults. Subjects received hymecromone at 1200 (n = 8), 2400 (n = 9), or 3600 (n = 9) mg/d divided into 3 doses daily, administered orally for 4 days. We assessed safety and tolerability of hymecromone and analyzed HA, 4-MU, and 4-methylumbelliferyl glucuronide (4-MUG; the main metabolite of 4-MU) concentrations in sputum and serum.RESULTSHymecromone was well tolerated up to doses of 3600 mg/d. Both sputum and serum drug concentrations increased in a dose-dependent manner, indicating that higher doses lead to greater exposures. Across all dose arms combined, we observed a significant decrease in sputum HA from baseline after 4 days of treatment. We also observed a decrease in serum HA. Additionally, higher baseline sputum HA levels were associated with a greater decrease in sputum HA.CONCLUSIONAfter 4 days of exposure to oral hymecromone, healthy human subjects experienced a significant reduction in sputum HA levels, indicating this oral therapy may have potential in pulmonary diseases where HA is implicated in pathogenesis.TRIAL REGISTRATIONClinicalTrials.gov NCT02780752.FUNDINGStanford Medicine Catalyst, Stanford SPARK, Stanford Innovative Medicines Accelerator program, NIH training grants 5T32AI052073-14 and T32HL129970.


Assuntos
Ácido Hialurônico , Himecromona , Administração Oral , COVID-19 , Europa (Continente) , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Himecromona/administração & dosagem , Himecromona/efeitos adversos
5.
medRxiv ; 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411348

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19 disease, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e. resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We find the percent solids and protein content are greatly elevated in COVID-19 compared to heathy control samples and closely resemble levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) are major components of respiratory secretions in COVID-19 and are likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibit heterogeneous rheological behaviors with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observe increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factorâ€"stimulated gene-6 (TSG6) staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicate that increases in HA and DNA in COVID-19 respiratory secretion samples correlate with enhanced inflammatory burden and suggest that DNA and HA may be viable therapeutic targets in COVID-19 infection.

6.
medRxiv ; 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32935110

RESUMO

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19 disease, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e. resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percent solids and protein content are all greatly elevated in COVID-19 compared to heathy control samples and closely resemble levels seen in cystic fibrosis (CF), a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan are major components of respiratory secretions in COVID-19 and are likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. These results highlight the dramatic biophysical properties of COVID-19 respiratory secretions and suggest that DNA and hyaluronan may be viable therapeutic targets in COVID-19 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA