RESUMO
Background and Objectives: The effective treatment of chronic myeloid leukemia leads to the restoration of proper immune system function. We aimed to investigate fluctuations in circulating cytokines, angiogenic factors and complement components in patients with CML during the first year of treatment with TKI and correlate them with the degree of achieved molecular response. Material and Methods: We recruited 31 patients with newly diagnosed CML. Peripheral blood and bone marrow samples were obtained, and concentrations of serum proteins were measured using an immunology multiplex assay. Results: The study cohort was divided into two groups of optimal or non-optimal in accordance with the European Leukemia Net (ELN) guidelines. We found significantly higher concentrations of C1q, C4 and C5a in serum after 3 months of TKI treatment in patients who achieved optimal responses in the 6 months after diagnosis. The most alterations were observed during 12 months of therapy. Patients in the optimal response group were characterized by higher serum concentrations of TGF-ß, EGF, VEGF, Angiopoietin 1, IFN-γ and IL-8. Conclusions: The later plasma concentrations of complement components were significantly increased in patients with optimal responses. The changes after 12 months of treatment were particularly significant. Similar changes in bone marrow samples were observed.
RESUMO
Blast phase (BP) of chronic myeloid leukemia (CML) still represents an unmet clinical need with a dismal prognosis. Due to the rarity of the condition and the heterogeneity of the biology and clinical presentation, prospective trials and concise treatment recommendations are lacking. Here we present the analysis of the European LeukemiaNet Blast Phase Registry, an international collection of the clinical presentation, treatment and outcome of blast phases which had been diagnosed in CML patients after 2015. Data reveal the expected heterogeneity of the entity, lacking a clear treatment standard. Outcomes remain dismal, with a median overall survival of 23.8 months (median follow up 27.8 months). Allogeneic stem cell transplantation (alloSCT) increases the rate of deep molecular responses. De novo BP and BP evolving from a previous CML do show slightly different features, suggesting a different biology between the two entities. Data show that outside clinical trials and in a real-world setting treatment of blast phase is individualized according to disease- and patient-related characteristics, with the aim of blast clearance prior to allogeneic stem cell transplantation. AlloSCT should be offered to all patients eligible for this procedure.
Assuntos
Crise Blástica , Leucemia Mielogênica Crônica BCR-ABL Positiva , Sistema de Registros , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Crise Blástica/patologia , Gerenciamento Clínico , Europa (Continente) , Seguimentos , Transplante de Células-Tronco Hematopoéticas/métodos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Prognóstico , Taxa de Sobrevida , Transplante Homólogo , Resultado do Tratamento , Idoso de 80 Anos ou maisRESUMO
Membrane transporters are important determinants of drug bioavailability. Their expression and activity affect the intracellular drug concentration in leukemic cells impacting response to therapy. Pharmacogenomics represents genetic markers that reflect allele arrangement of genes encoding drug transporters associated with treatment response. In previous work, we identified SNP rs460089 located in the promotor of SLC22A4 gene encoding imatinib transporter OCTN1 as influential on response of patients with chronic myeloid leukemia treated with imatinib. Patients with rs460089-GC pharmacogenotype had significantly superior response to first-line imatinib treatment compared to patients with rs460089-GG. This study investigated whether pharmacogenotypes of rs460089 are associated with sustainability of treatment-free remission (TFR) in patients from the EUROpean Stop Kinase Inhibitor (EURO-SKI) trial. In the learning sample, 176 patients showed a significantly higher 6-month probability of molecular relapse free survival (MRFS) in patients with GC genotype (73%, 95% CI: 60-82%) compared to patients with GG (51%, 95% CI: 41-61%). Also over time, patients with GC genotype had significantly higher MRFS probabilities compared with patients with GG (HR: 0.474, 95% CI: 0.280-0.802, p = 0.0054). Both results were validated with data on 93 patients from the Polish STOP imatinib study. In multiple regression models, in addition to the investigated genotype, duration of TKI therapy (EURO-SKI trial) and duration of deep molecular response (Polish study) were identified as independent prognostic factors. The SNP rs460089 was found as an independent predictor of TFR.
Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/uso terapêutico , Prognóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Antineoplásicos/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas de Membrana Transportadoras/uso terapêutico , Resultado do TratamentoRESUMO
The pathophysiology of the severe course of COVID-19 is multifactorial and not entirely elucidated. However, it is well known that the hyperinflammatory response and cytokine storm are paramount events leading to further complications. In this paper, we investigated the vascular response in the pathophysiology of severe COVID-19 and aimed to identify novel biomarkers predictive of ICU admission. The study group consisted of 210 patients diagnosed with COVID-19 (age range: 18-93; mean ± SD: 57.78 ± 14.16), while the control group consisted of 80 healthy individuals. We assessed the plasma concentrations of various vascular factors using the Luminex technique. Then, we isolated RNA from blood mononuclear cells and performed a bioinformatics analysis investigating various processes related to vascular response, inflammation and angiogenesis. Our results confirmed that severe COVID-19 is associated with vWF/ADAMTS 13 imbalance. High plasma concentrations of VEGFR and low DPP-IV may be potential predictors of ICU admission. SARS-CoV-2 infection impairs angiogenesis, hinders the generation of nitric oxide, and thus impedes vasodilation. The hypercoagulable state develops mainly in the early stages of the disease, which may contribute to the well-established complications of COVID-19.
Assuntos
COVID-19 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Inflamação , Unidades de Terapia Intensiva , SARS-CoV-2 , VasodilataçãoRESUMO
INTRODUCTION: Therapeutic adherence (TA) is one of the most important factors influencing the effectiveness of treatment. Oral anti-cancer drugs are increasingly used to treat malignancy including multiple myeloma (MM). Our study aimed to determine TA of patients with MM treated with IMiDs, to identify TA risk factors, and to determine satisfaction with medical care during the treatment with IMiDs. METHODS: A cross-sectional survey-based study involving adult patients with MM treated with IMiDs. RESULTS: Between January 2021 and May 2021, 267 patients with MM were enrolled in the study. The dosing schedule was declared as easy by 71.8% of patients, as standard for 24.0%, and difficult for 4.2% of patients. During MM treatment, 85.0% of patients did not skip any IMiDs dose, and 87.6% did not skip the IMiDs dose in the last cycle of chemotherapy. Identified factors affecting TA included the treatment duration and education level. In addition, depending on the patient's well-being, gender, and household companionship influenced TA. Satisfaction with medical care during the treatment with IMiDs was declared by 95.5% of patients with MM. In our cohort, 95.5% of patients were satisfied with the information they received from the hematologist during treatment with IMiDs. CONCLUSIONS: Patients with MM treated with IMiDs are highly adherent to treatment. With time from the beginning of treatment, patients need more attention and motivation to adhere to the therapy rules.
RESUMO
Apart from the driver mutations, high molecular risk (HMR) variants and other factors have been reported to influence the prognosis of primary myelofibrosis (PMF). The aim of our study was to investigate the impact of laboratory and molecular characteristics at the time of diagnosis (TOD) on the PMF outcome. The study group consisted of 82 patients recruited from three Polish university centers. Among the driver mutations, only CALR type 1 positively influenced the overall survival (OS). The risk of progression to accelerated or blastic disease phase (AP/BP) did not depend on the driver mutation type, but was closely associated with the presence of HMR variants (p = 0.0062). The risk of death (ROD) was higher in patients with HMR variants (OR[95%CI] = 4.33[1.52;12.34], p = 0.0044) and in patients with a platelet count at the TOD between 50-100 G/L (HR[95%CI] = 2.66[1.11;6.35]) and < 50 G/L (HR[95%CI] = 8.44[2.50;28.44]). Median survival time was 7.8, 2.2 and 1.4 years in patients with large unstained cells (LUC) count of [0.0-0.2], (0.2-0.4] and > 0.4 G/L at the TOD, respectively. We found an unexpected, hitherto undescribed, association between LUC count at the TOD and PMF prognosis. Our analysis led to the following conclusions: in PMF patients at the TOD 1) the presence of HMR variants, especially combined, is associated with an increased risk of progression to the AP and BP, and shorter OS, 2) severe thrombocytopenia confers worse prognosis than the moderate one, 3) LUC count is closely related with the disease phase, and associated with the ROD and OS.
Assuntos
Mielofibrose Primária , Trombocitopenia , Humanos , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/genética , Mutação , Prognóstico , Trombocitopenia/genética , Janus Quinase 2/genéticaRESUMO
INTRODUCTION: Despite comparatively favourable prognosis in polycythemia vera (PV) patients (pts), the overall survival is shorter compared to the age-matched general population. The aim of the study was to evaluate the impact of chosen laboratory and genetic factors on the individual disease outcome, i.e. risk of thrombosis, myelofibrosis/blastic transformation and death. MATERIALS AND METHODS: The study group consisted of 151 pts and 57 healthy donors (HD). RESULTS: JAK2V617F mutation was found in 96.7% (146/151) of the studied pts. JAK2 exon 12 mutations were identified in 2 individuals. The coexistence of JAK2V617F and JAK2 exon 12 mutation was confirmed in 2 other pts. In one case, neither JAK2V617F nor JAK2 exon 12 mutation was found. The presence of ten different non-driver mutations (ASXL1, SRSF2, U2AF1, IDH2) in eight of the analyzed pts (5.3%) was confirmed. The overall frequency of thrombotic events (TE) in the studied PV group was 23.8% (36/151). In patients with TE, median platelet count was lower than in pts without TE. Thrombotic risk did not depend on JAK2 rs12343867, TERT rs2736100, OBFC1 rs9420907 SNV, however, we found a novel strong tendency towards statistical significance between the CC genotype miR-146a rs2431697 and thrombosis. The disease progression to fibrotic phase was confirmed in 9% of the pts. Fibrotic transformation in PV pts was affected mainly by JAK2V617F variant allele frequency (VAF) and the presence of coexisting non-driver variants. The high JAK2V617F VAF and elevated white blood cell (WBC) count at the time of diagnosis were associated with an increased risk of death. CONCLUSION: Therefore, in our opinion, complex, laboratory and genetic PV pts evaluation at the time of diagnosis should be incorporated into a new prognostic scoring system to more precisely define the PV prognosis and to optimize the therapeutic decision-making process.
Assuntos
Policitemia Vera , Trombose , Humanos , Policitemia Vera/genética , Policitemia Vera/diagnóstico , Policitemia Vera/tratamento farmacológico , Trombose/genética , Janus Quinase 2/genética , Mutação , Frequência do Gene , Nucleotídeos/uso terapêuticoRESUMO
Abnormalities in hematological parameters of peripheral blood have been noted in patients with endogenous Cushing's Syndrome (CS) in the corticotropin (ACTH)-dependent and ACTH-independent forms. Nevertheless, the exact mechanism of glucocorticoids (GCs) action on human hematopoiesis is still not entirely clear. The aim of the study was to determine whether endogenous excessive production of GCs could affect apoptosis of CD34+ cells enriched in hematopoietic stem and progenitor cells (HSPCs) collected from the peripheral blood of newly diagnosed CS patients. Flow cytometry, Annexin-V enzyme-linked immunosorbent assay, TUNEL assay, real-time quantitative PCR, and microarray RNA/miRNA techniques were used to characterize CS patients' HSPCs. We found that the glucocorticoid receptor (GR) protein expression levels in CS were higher than in healthy controls. A complex analysis of apoptotic status of CS patients' HSPC cells showed that GCs significantly augmented apoptosis in peripheral blood-derived CD34+ cells and results obtained using different methods to detect early and late apoptosis in analyzed cell population were consistent. CS was also associated with significant upregulation in several members of the BCL-2 superfamily and other genes associated with apoptosis control. Furthermore, global gene expression analysis revealed significantly higher expression of genes associated with programmed cell death control in HSPCs from CS patients. These findings suggest that human endogenous GCs have a direct pro-apoptotic activity in hematopoietic CD34+ cells derived from CS subjects before treatment.
Assuntos
Síndrome de Cushing , Glucocorticoides , Humanos , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Síndrome de Cushing/metabolismo , Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Apoptose/fisiologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Hormônio Adrenocorticotrópico/metabolismoRESUMO
The exact pathophysiology of severe COVID-19 is not entirely elucidated, but it has been established that hyperinflammatory responses and cytokine storms play important roles. The aim of this study was to examine CMV status, select chemokines, and complement components in COVID-19, and how concentrations of given molecules differ over time at both molecular and proteomic levels. A total of 210 COVID-19 patients (50 ICU and 160 non-ICU patients) and 80 healthy controls were enrolled in this study. Concentrations of select chemokines (CXCL8, CXCL10, CCL2, CCL3, CCR1) and complement factors (C2, C9, CFD, C4BPA, C5AR1, CR1) were examined at mRNA and protein levels with regard to a COVID-19 course (ICU vs. non-ICU group) and CMV status at different time intervals. We detected several significant differences in chemokines and complement profiles between ICU and non-ICU groups. Pro-inflammatory chemokines and the complement system appeared to greatly contribute to the pathogenesis and development of severe COVID-19. Higher concentrations of CXCL8 and CCL2 in the plasma, with reduced mRNA expression presumably through negative feedback mechanisms, as well as CMV-positive status, correlated with more severe courses of COVID-19. Therefore, CXCL8, CCL2, and CMV seropositivity should be considered as new prognostic factors for severe COVID-19 courses. However, more in-depth research is needed.
Assuntos
COVID-19 , Infecções por Citomegalovirus , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Infecções por Citomegalovirus/complicações , Humanos , Prognóstico , Proteômica , RNA MensageiroRESUMO
Introduction: The aim of our research was to investigate changes in the molecular background of the immune response in the chronic phase (CP) of chronic myeloid leukaemia (CML) during treatment with tyrosine kinase inhibitors (TKIs). Methods: Global gene and miRNA expression profiles were assessed using genome-wide RNA and miRNA microarray technology in bone marrow mononuclear cells. Fifty-one patients were recruited, and bone marrow samples were taken at diagnosis before treatment with TKIs and after 3, 6, and 12 months of treatment with TKIs. The largest number of upregulated genes was observed when the 0-month group (time of diagnosis) was compared to the 3-month group; 1774 genes were significantly upregulated, and 390 genes were significantly downregulated. Discussion: Upregulated biological processes according to gene ontology (GO) classification involved basic cellular processes such as cell division, cell cycle, cell-cell adhesion, protein transport, mitotic nuclear division, apoptosis, and DNA replication. Differentially expressed miRNAs were annotated using GO classification to several immunity-related processes, including the T cell receptor signalling pathway, T cell costimulation, immune response, and inflammatory response. TKI therapy exerts a significant impact on cellular cycle processes and T-cell activation, which was proven at the molecular level.
RESUMO
We present an extremely rare case report of a 29-year-old multiple myeloma patient with central nervous system involvement and secondary hemophagocytic lymphohistiocytosis (HLH). We observed that HLH was presumably triggered by the immunomodulatory drug-lenalidomide. HLH is frequently misdiagnosed or underdiagnosed. As HLH requires immediate treatment, our report emphasizes the need to consider HLH in the differential diagnosis when the condition of a patient receiving chemotherapy rapidly deteriorates and an infectious etiology is excluded. We furthermore discuss the pathogenesis of HLH, with particular emphasis on drugs affecting the immune system as well as possible therapeutic strategies.
Assuntos
Linfo-Histiocitose Hemofagocítica , Mieloma Múltiplo , Segunda Neoplasia Primária , Humanos , Adulto , Linfo-Histiocitose Hemofagocítica/complicações , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Mieloma Múltiplo/complicações , Mieloma Múltiplo/tratamento farmacológico , Lenalidomida/uso terapêutico , Agentes de Imunomodulação , Diagnóstico DiferencialRESUMO
It has been postulated that the changes in the molecular characteristics of the malignant clone(s) and the abnormal activation of JAK-STAT signaling are responsible for myeloproliferative neoplasm progression to more advanced disease phases and the immune escape of the malignant clone. The continuous JAK-STAT pathway activation leads to enhanced activity of the promoter of CD274 coding programmed death-1 receptor ligand (PD-L1), increased PD-L1 level, and the immune escape of MPN cells. The aim of study was to evaluate the PDL1 mRNA and JAK2 mRNA level in molecularly defined essential thrombocythaemia (ET) patients (pts) during disease progression to post-ET- myelofibrosis (post-ET-MF). The study group consisted of 162 ET pts, including 30 pts diagnosed with post-ET-MF. The JAK2V617F, CALR, and MPL mutations were found in 59.3%, 19.1%, and 1.2% of pts, respectively. No copy-number alternations of the JAK2, PDL1, and PDCDL1G2 (PDL2) genes were found. The level of PD-L1 was significantly higher in the JAK2V617F than in the JAK2WT, CALR mutation-positive, and triple-negative pts. The PD-L1 mRNA level was weakly correlated with both the JAK2V617F variant allele frequency (VAF), and with the JAK2V617F allele mRNA level. The total JAK2 level in post-ET-MF pts was lower than in ET pts, despite the lack of differences in the JAK2V617F VAF. In addition, the PD-L1 level was lower in post-ET-MF. A detailed analysis has shown that the decrease in JAK2 and PDL1 mRNA levels depended on the bone marrow fibrosis grade. The PDL1 expression showed no differences in relation to the genotype of the JAK2 haplotypeGGCC_46/1, hemoglobin concentration, hematocrit value, leukocyte, and platelet counts. The observed drop of the total JAK2 and PDL1 levels during the ET progression to the post-ET-MF may reflect the changes in the JAK2V617F positive clone proliferative potential and the PD-L1 level-related immunosuppressive effect. The above-mentioned hypothesis is supported by The Cancer Genome Atlas (TCGA) data, confirming a strong positive association between CD274 (encoding PD-L1), CXCR3 (encoding CXCR3), and CSF1 (encoding M-CSF) expression levels, and recently published results documenting a drop in the CXCR3 level and circulating M-CSF in patients with post-ET-MF.
Assuntos
Transtornos Mieloproliferativos , Mielofibrose Primária , Trombocitemia Essencial , Humanos , Trombocitemia Essencial/genética , Trombocitemia Essencial/patologia , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Mutação , RNA Mensageiro/genética , Calreticulina/genética , Calreticulina/metabolismoRESUMO
Bortezomib (BTZ) is proteasome inhibitor, effectively used in the treatment of multiple myeloma, but frequently discontinued due to peripheral neuropathy, which develops in patients after consecutive treatment cycles. The molecular mechanisms affected by BTZ in neuronal cells, which result in neuropathy, remain unknown. However, BTZ is unlikely to lead to permanent morphological nerve damage, because neuropathy reverses after discontinuation of treatment, and nerve cells have very limited renewal capacity. We have previously shown that BTZ induces methylation changes in SH-SY5Y cells, which take part in the development of treatment resistance. Here, we hypothesized that BTZ affects the methylomes of mature neurons, and these changes are associated with BTZ neurotoxicity. Thus, we studied methylomes of neuronal cells, differentiated from the LUHMES cell line, after cycles of treatment with BTZ. Our results show that BTZ induces specific methylation changes in mature neurons, which are not present in SH-SY5Y cells after BTZ treatment. These changes appear to affect genes involved in morphogenesis, neurogenesis, and neurotransmission. Furthermore, identified methylation changes are significantly enriched within binding sites of transcription factors previously linked to neuron physiology, including EBF, PAX, DLX, LHX, and HNF family members. Altogether, our results indicate that methylation changes are likely to be involved in BTZ neurotoxicity.
RESUMO
We present a unique case of a young woman with acute myeloid leukemia (AML) with complex karyotype. The presence of the t(4;11)(q23;p15) is extremely rare in myeloid leukemias, while t(4;8)(q32;q13) has not yet been described in any leukemia reference. Another interesting issue is the familial aggregation of myeloid malignancies and worse course of the disease in each subsequent generation, as well as an earlier onset of the disease. Our report emphasizes the need for thorough pedigree examination upon myeloid malignancy diagnosis as there are relatives for whom counseling, gene testing, and surveillance may be highly advisable.
Assuntos
Leucemia Mieloide Aguda , Translocação Genética , Feminino , Humanos , Cariótipo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , LinhagemRESUMO
INTRODUCTION: Tyrosine kinase inhibitors (TKIs) have greatly improved the treatment outcome for most patients with chronic myeloid leukemia (CML). Ponatinib is a new pan-inhibitor of TK active in resistant CML. This study aimed to evaluate the efficacy and safety of ponatinib in patients suffering from CML. PATIENTS AND METHODS: This multicenter, non-randomized, observational, retrospective study evaluated the efficacy and safety of ponatinib administered in adult CML patients in any disease phase, including those with a detected ABL T315I mutation, which were resistant or intolerant to previous-generation TKIs. The study comprised 43 patients benefiting from the ponatinib donation program who were treated in 16 Polish centers. RESULTS: For patients who started treatment with ponatinib in chronic phase (CP) (n = 23) and in accelerated phase (AP) (n = 3) the median time on ponatinib was 19.5 months (range: 1.0-35.4), and 31.7 months (range: 31.0-34.1), respectively. All these patients were in CP after 1 month of treatment and at the end of observation - none of them progressed to AP or blastic phase (BP) during the study, meaning that progression-free survival was 100% at the end of observation (35.4 months). The estimated 2-year survival in this group of patients was 84%. For all 43 patients, median survival was not reached (lower quartile 6.3 months), and estimated 2-year survival was 60%. CONCLUSION: Our analysis confirmed ponatinib efficacy in a significant proportion of patients heavily pre-treated with TKIs achieving durable responses in both CP and AP/BP CML groups.
Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Adulto , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Imidazóis , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Polônia , Inibidores de Proteínas Quinases/efeitos adversos , Piridazinas , Estudos RetrospectivosRESUMO
ALS remains a fatal, neurodegenerative motor neuron disease. Numerous studies seem to confirm that innate immune system is involved in the pathophysiology of ALS. Hence, the assessment of the complement system and attempts to modify its activity remain the target of medical intervention in ALS. In the present study, three intrathecal administrations of autologous bone marrow-derived lineage-negative (Lin-) cells were performed every 6 weeks in 20 sporadic ALS patients. The concentrations of various complement components in the cerebrospinal fluid and plasma at different time points after cell injection were quantified using a Luminex multiplex. The results of the complement system were correlated with the level of leukocytes, neutrophils, lymphocytes, fibrinogen and CRP in the peripheral blood and the functional status of ALS patients using Norris and ALS-FRSr scales. The study showed a statistically significant decrease in plasma C3b concentration in all 7th days after cell application. In parallel, a peak decrease in neutrophil count and CRP level was observed on days 5-7, with a simultaneous maximum clinical improvement on days 7-28 of each Lin- cell administration. Adjuvant Lin- cell therapy appears to have the silencing potential on the complement-mediated immune system and thus suppress pro-inflammatory reactions responsible for neurodegeneration. However, further in-depth studies are necessary to address this issue.
RESUMO
The launch of novel chemotherapeutic agents-in particular, proteasome inhibitors and immunomodulatory drugs-dramatically changed multiple myeloma (MM) therapy, improving the response rate and prolonging progression-free survival. However, none of the anti-MM drugs are deprived of side effects. Peripheral neuropathy (PN) seems to be one of the most pressing problems. Despite extensive research in this area, the pathogenesis of drug-induced peripheral neuropathy (DiPN) has not yet been fully elucidated. In the present study, we aimed to assess the potential relationship between proinflammatory factors and the development of PN in MM patients with particular emphasis on the application of VTD (bortezomib, thalidomide, dexamethasone) regimen. Our analysis identified increased concentrations of CCL2, IL-1ß, and IFN-γ in plasma of MM patients during treatment, both with and without symptoms of PN, compared with untreated neuropathy-free MM patients. At the same time, the plasma concentration of IL-1ß in patients with neuropathy was significantly increased compared with patients without PN before and during treatment. Moreover, the results were enhanced at the transcript level by performing global mRNA expression analysis using microarray technology. The most significant changes were observed in the expression of genes responsible for regulating immunological and apoptotic processes. An in-depth understanding of the mechanisms responsible for the development of DiPN might in the future reduce the incidence of PN and accelerate diagnosis, allowing the choice of neuropathy-free treatment strategies for MM.
RESUMO
We present one of few cases of COVID-19 occurrence during the early phase of autologous hematopoietic stem cell transplantation. We observed an interesting correlation between the patient's rapid clinical deterioration and myeloid reconstitution that cannot be assigned to engraftment syndrome. Our report emphasizes the need to investigate whether timely steroid therapy upon neutrophil engraftment in the setting of COVID-19 could limit the extent of lung injury and prevent ARDS. Furthermore, we discuss a significant issue of possible prolonged incubation of the virus in heavily pretreated hematological patients.
Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Humanos , SARS-CoV-2 , Transplante AutólogoRESUMO
Multiple myeloma (MM) is a malignant, incurable neoplastic disease. The currently used treatment significantly improves the prognosis and extends the survival time of patients. Unfortunately, a common side effect of the therapy is peripheral neuropathy, which may lead to dose reduction or complete treatment discontinuation/modification. In this study, we examined the changes in plasma levels of circulating miRNAs in myeloma patients to define potential factors characteristic for drug-induced peripheral neuropathy (DiPN). Global miRNA expression profile in the plasma of patients with MM during treatment was determined using miRNA microarray technology. Receiver operating characteristic (ROC) analysis allowed the identification of three miRNAs (miR-22-3p; miR-23a-3p; miR-24-3p) that could be a potential biomarker of PN. The most promising results were obtained for miR-22-3p, which was characterized by ROC area under curve (AUC) = 0.807. Our results suggest a relationship between the DiPN in patients with MM and the level of selected miRNAs in the plasma.
Assuntos
Antineoplásicos , MicroRNAs , Mieloma Múltiplo , Doenças do Sistema Nervoso Periférico , Biomarcadores , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/genética , Curva ROCRESUMO
BACKGROUND: Autologous bone marrow-derived lineage-negative (Lin-) cells present antiapoptotic and neuroprotective activity. The aim of the study was to evaluate the safety and efficacy of novel autologous Lin- cell therapy during a 12-month follow-up period. METHODS: Intravitreal injection of Lin- cells in 30 eyes with retinitis pigmentosa (RP) was performed. The fellow eyes (FEs) were considered control eyes. Functional and morphological eye examinations were performed before and 1, 3, 6, 9, and 12 months after the injection. RESULTS: Patients whose symptoms started less than 10 years ago gained 14 ± 10 letters, while those with a longer disease duration gained 2.86 ± 8.54 letters compared to baseline at the 12-month follow-up (p = 0.021). There were significantly higher differences in response densities of P1-wave amplitudes in the first ring of multifocal ERGs in treated eyes than FE recordings in all follow-up points were detected. Accordingly, the mean deviation in 10-2 static perimetry improved significantly in the treated eyes compared with fellow eyes 12 months after the procedure. The QoL scores improved significantly and lasted until the 9-month visit. CONCLUSION: Lin- cell-based therapy is safe and effective, especially for a well-selected group of RP patients who still maintained good function of the foveal cones.