Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(12): 17835-17857, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36988800

RESUMO

Food waste has been identified as one of the major factors that constitute numerous anthropogenic activities, especially in developing countries. There is a growing problem with food waste that affects every part of the waste management system, from collection to disposal; finding long-term solutions necessitates involving all participants in the food supply chain, from farmers and manufacturers to distributors and consumers. In addition to food waste management, maintaining food sustainability and security globally is crucial so that every individual, household, and nation can always get food. "End hunger, achieve food security and enhanced nutrition, and promote sustainable agriculture" are among the main challenges of global sustainable development (SDG) goal 2. Therefore, sustainable food waste management technology is needed. Recent attention has been focused on global food loss and waste. One-third of food produced for human use is wasted every year. Source reduction (i.e., limiting food losses and waste) and contemporary treatment technologies appear to be the most promising strategy for converting food waste into safe, nutritious, value-added feed products and achieving sustainability. Food waste is also employed in industrial processes for the production of biofuels or biopolymers. Biofuels mitigate the detrimental effects of fossil fuels. Identifying crop-producing zones, bioenergy cultivars, and management practices will enhance the natural environment and sustainable biochemical process. Traditional food waste reduction strategies are ineffective in lowering GHG emissions and food waste treatment. The main contribution of this study is an inventory of the theoretical and practical methods of prevention and minimization of food waste and losses. It identifies the trade-offs for food safety, sustainability, and security. Moreover, it investigates the impact of COVID-19 on food waste behavior.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Alimentos , Eliminação de Resíduos/métodos , Biocombustíveis , Gerenciamento de Resíduos/métodos , Conservação dos Recursos Naturais , Segurança Alimentar
2.
Environ Pollut ; 320: 121104, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682619

RESUMO

Nearly a billion people, especially in underdeveloped nations, need safe drinking water. Indian studies suggest that most drinking water sources have high coliform levels, and quality assurance is required. This study was conducted in rural parts of South Kashmir in the Western Himalaya from February 2019 to January 2020. Standard river water sampling was done from upstream to downstream of the river. This study examined the detection, molecular identification, and chemical water quality of coliform-contaminated drinking water, which sums up river water pollution. Water quality varied significantly, indicating downstream contamination. Sangam (downstream) had the highest coliform count, showing 72.2600 cfu per litre in summer, while Kongwaton (upstream), near the Veshaw River, had no coliform count in winter. In summer, Sangam (downstream) had the highest water quality metrics (pH 6.847, Electrical conductivity (EC) 71.620 dS/m, Biological oxygen demand (BOD) 1.120 mg/L, and Chemical oxygen demand (COD) 24.637 mg/L) in all seasons. The lowest winter water quality metrics in Kongwaton were pH 8.947, EC 253.680 dS/m, BOD 4.963 mg/L, and COD 51.440 mg/L. Coliforms in water suggest faecal contamination. This study examines the water quality attributes of drinking water and associated factors to determine river pollution. Total DNA was collected and sequenced for 16 S rDNA and metagenomics. Universal primers were used to amplify the bacterial 16 S rRNA. Using BLAST, the amplified 16 S rRNA gene sequence was matched to the NCBI database. A metagenomic study revealed 27 species with different relative abundance. These species include Escherichia coli, E. fergusonii, E. albertii, Klebsiella grimontii, and Shigella dysenteriae. This study is thought to be the first to discriminate against E. fergusonii, E. albertii, K. grimontii, and S. dysenteriae from E. coli and to report on E. fergusonii and E. albertii, K. grimontii, and S. dysenteriae in the river Veshaw water sources in Kulgam, Western Himalaya.


Assuntos
Água Potável , Qualidade da Água , Humanos , Estações do Ano , Monitoramento Ambiental , Escherichia coli , Filogenia , Poluição da Água/análise , Bactérias Gram-Negativas , Microbiologia da Água
3.
Sci Rep ; 12(1): 6742, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468936

RESUMO

The less phytopathogen susceptibility in Himalayan Brassica rapa L. has made it an exceptional crop eluding synthetic pesticide inputs, thereby guarantying economically well-founded and ecologically sustainable agriculture. The relevance of niche microflora of this crop has not been deliberated in this context, as endosymbiosiome is more stable than their rhizosphere counterparts on account of their restricted acquaintance with altering environment; therefore, the present investigation was carried out to study the endophytic microfloral dynamics across the B. rapa germplasm in context to their ability to produce chitinase and to characterize the screened microflora for functional and biochemical comportments in relevance to plant growth stimulation. A total of 200 colonies of bacterial endophytes were isolated from the roots of B. rapa across the J&K UT, comprising 66 locations. After morphological, ARDRA, and sequence analysis, eighty-one isolates were selected for the study, among the isolated microflora Pseudomonas sp. Bacillus sp. dominated. Likewise, class γ-proteobacteria dominated, followed by Firmicutes. The diversity studies have exposed changing fallouts on all the critical diversity indices, and while screening the isolated microflora for chitinase production, twenty-two strains pertaining to different genera produced chitinase. After carbon source supplementation to the chitinase production media, the average chitinase activity was significantly highest in glycerol supplementation. These 22 strains were further studied, and upon screening them for their fungistatic behavior against six fungal species, wide diversity was observed in this context. The antibiotic sensitivity pattern of the isolated strains against chloramphenicol, rifampicin, amikacin, erythromycin, and polymyxin-B showed that the strains were primarily sensitive to chloramphenicol and erythromycin. Among all the strains, only eleven produced indole acetic acid, ten were able to solubilize tricalcium phosphate and eight produced siderophores. The hydrocyanic acid and ammonia production was observed in seven strains each. Thus, the present investigation revealed that these strains could be used as potential plant growth promoters in sustainable agriculture systems besides putative biocontrol agents.


Assuntos
Brassica rapa , Quitinases , Bactérias , Cloranfenicol , Eritromicina , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S
4.
Bull Environ Contam Toxicol ; 108(6): 1088-1097, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35113217

RESUMO

The present study was carried out during the years 2017-2018 and assessed the impact of anthropogenic activities on the physico-chemical characteristics of soil in the Kashmir Himalaya. At disturbed sites anthropogenic activities like deforestation, grazing, tourism, urbanization, traffic etc. are seen prominent and their effect on soil environment resulted in less vegetation cover and exhibited diminution in organic matter. There was a significant increase in moisture content (21.13 ± 1.51), organic carbon (2.65% ± 0.52%), available nitrogen (493.790 ± 2.105 kg/ha), and potassium (432.727 ± 1.738 kg/ha) at undisturbed area Baerabal Harwan. However, there was a reduced pH (5.39 ± 0.230) and available phosphorus (18.993 ± 1.370) at undisturbed area in contrast to disturbed sites. Significantly higher values of Fe, Cu, Zn and Ni were found in disturbed areas (46.33 ± 0.16, 3.972 ± 0.001, 2.224 ± 0.003 and 1.7033 ± 0.002 ppm) respectively. The present findings could be helpful in formulating conservation strategies of soil at disturbed areas that are affected by anthropogenic activities which effects the soil microbial health of the forest soils. The study therefore indicated the need for employing best forest management and effective enforcement with vigorous reforestation programmes and would be a way forward towards mitigating the ongoing deterioration of the plant-soil system, sustaining forest productivity and soil fertility in the long run, and protecting people's livelihoods.


Assuntos
Poluentes do Solo , Solo , Efeitos Antropogênicos , Carbono , Florestas , Humanos , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA