Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1376622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741774

RESUMO

Introduction: Cancer stem cells (CSCs), a group of tumor-initiating and tumor-maintaining cells, may be major players in the treatment resistance and recurrence distinctive of chordoma. Characterizing CSCs is crucial to better targeting this subpopulation. Methods: Using flow cytometry, six chordoma cell lines were evaluated for CSC composition. In vitro, cell lines were stained for B7H6, HER2, MICA-B, ULBP1, EGFR, and PD-L1 surface markers. Eighteen resected chordomas were stained using a multispectral immunofluorescence (mIF) antibody panel to identify CSCs in vivo. HALO software was used for quantitative CSC density and spatial analysis. Results: In vitro, chordoma CSCs express more B7H6, MICA-B, and ULBP1, assessed by percent positivity and mean fluorescence intensity (MFI), as compared to non-CSCs in all cell lines. PD- L1 percent positivity is increased by >20% in CSCs compared to non-CSCs in all cell lines except CH22. In vivo, CSCs comprise 1.39% of chordoma cells and most are PD-L1+ (75.18%). A spatial analysis suggests that chordoma CSCs cluster at an average distance of 71.51 mm (SD 73.40 mm) from stroma. Discussion: To our knowledge, this study is the first to identify individual chordoma CSCs and describe their surface phenotypes using in vitro and in vivo methods. PD-L1 is overexpressed on CSCs in chordoma human cell lines and operative tumor samples. Similarly, potential immunotherapeutic targets on CSCs, including B7H6, MICA-B, ULBP1, EGFR, and HER2 are overexpressed across cell lines. Targeting these markers may have a preferential role in combating CSCs, an aggressive subpopulation likely consequential to chordoma's high recurrence rate.

2.
Transl Oncol ; 44: 101943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593586

RESUMO

PURPOSE: Sinonasal undifferentiated carcinoma (SNUC) is a rare, aggressive malignancy of the sinonasal cavity with poor prognosis and limited treatment options. To investigate the potential for SNUC sensitivity to combinatory immunotherapy, we performed in vitro studies with SNUC cell lines and used multi-spectral immunofluorescence to characterize the in vivo patient SNUC tumor immune microenvironment (TIME). EXPERIMENTAL DESIGN: Human-derived SNUC cell lines were used for in vitro studies of tumor cell susceptibility to natural killer (NK) cell-based immunotherapeutic strategies. Tumor samples from 14 treatment naïve SNUC patients were examined via multi-spectral immunofluorescence and clinical correlations assessed. RESULTS: Anti-PD-L1 blockade enhanced NK cell lysis of SNUC cell lines ∼5.4 fold (P ≤ 0.0001). This effect was blocked by a CD16 neutralizing antibody demonstrating activity through an antibody-dependent cellular cytotoxicity (ADCC) mediated pathway. ADCC-dependent lysis of SNUC cells was further enhanced by upregulation of PD-L1 on tumor cells by exogenous interferon-gamma (IFN-γ) administration or interleukin-15 (IL-15) stimulated IFN-γ release from NK cells. Combination treatment with anti-PD-L1 blockade and IL-15 superagonism enhanced NK-cell killing of SNUC cells 9.6-fold (P ≤ 0.0001). Untreated SNUC patient tumor samples were found to have an NK cell infiltrate and PD-L1+ tumor cells at a median of 5.4 cells per mm2. A striking 55.7-fold increase in CKlow tumor cell/NK cell interactions was observed in patients without disease recurrence after treatment (P = 0.022). Patients with higher CD3+CD8+ in the stroma had a significantly improved 5-year overall survival (P = 0.0029) and a significant increase in CKlow tumor cell/CD8+ cytotoxic T cell interactions was noted in long-term survivors (P = 0.0225). CONCLUSION: These data provide the pre-clinical rationale for ongoing investigation into combinatory immunotherapy approaches for SNUC.

3.
Cancer Immunol Immunother ; 72(8): 2783-2797, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37166485

RESUMO

There is strong evidence that chemotherapy can induce tumor necrosis which can be exploited for the targeted delivery of immuno-oncology agents into the tumor microenvironment (TME). We hypothesized that docetaxel, a chemotherapeutic agent that induces necrosis, in combination with the bifunctional molecule NHS-IL-12 (M9241), which delivers recombinant IL-12 through specific targeting of necrotic regions in the tumor, would provide a significant antitumor benefit in the poorly inflamed murine tumor model, EMT6 (breast), and in the moderately immune-infiltrated tumor model, MC38 (colorectal). Docetaxel, as monotherapy or in combination with NHS-IL-12, promoted tumor necrosis, leading to the improved accumulation and retention of NHS-IL-12 in the TME. Significant antitumor activity and prolonged survival were observed in cohorts receiving docetaxel and NHS-IL-12 combination therapy in both the MC38 and EMT6 murine models. The therapeutic effects were associated with increased tumor infiltrating lymphocytes and were dependent on CD8+ T cells. Transcriptomics of the TME of mice receiving the combination therapy revealed the upregulation of genes involving crosstalk between innate and adaptive immunity factors, as well as the downregulation of signatures of myeloid cells. In addition, docetaxel and NHS-IL-12 combination therapy effectively controlled tumor growth of PD-L1 wild-type and PD-L1 knockout MC38 in vivo, implying this combination could be applied in immune checkpoint refractory tumors, and/or tumors regardless of PD-L1 status. The data presented herein provide the rationale for the design of clinical studies employing this combination or similar combinations of agents.


Assuntos
Antígeno B7-H1 , Neoplasias , Camundongos , Animais , Docetaxel , Linfócitos T CD8-Positivos , Interleucina-12/farmacologia , Necrose , Microambiente Tumoral , Linhagem Celular Tumoral , Imunoterapia
4.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564129

RESUMO

BACKGROUND: While radiation and chemotherapy are primarily purposed for their cytotoxic effects, a growing body of preclinical and clinical evidence demonstrates an immunogenic potential for these standard therapies. Accordingly, we sought to characterize the immunogenic potential of radiation and cisplatin in human tumor models of HPV-associated malignancies. These studies may inform rational combination immuno-oncology (IO) strategies to be employed in the clinic on the backbone of standard of care, and in so doing exploit the immunogenic potential of standard of care to improve durable responses in HPV-associated malignancies. METHODS: Retroviral transduction with HPV16 E7 established a novel HPV-associated sinonasal squamous cell carcinoma (SNSCC) cell line. Three established HPV16-positive cell lines were also studied (cervical carcinoma and head and neck squamous cell carcinoma). Following determination of sensitivities to standard therapies using MTT assays, flow cytometry was used to characterize induction of immunogenic cell stress following sublethal exposure to radiation or cisplatin, and the functional consequence of this induction was determined using impedance-based real time cell analysis cytotoxicity assays employing HPV16 E7-specific cytotoxic lymphocytes (CTLs) with or without N803 (IL-15/IL-15-Rα superagonist) or exogenous death receptor ligands. In vitro observations were translated using an in vivo xenograft NSG mouse model of human cervical carcinoma evaluating cisplatin in combination with CTL adoptive cell transfer. RESULTS: We showed that subpopulations surviving clinically relevant doses of radiation or cisplatin therapy were more susceptible to CTL-mediated lysis in four of four tumor models of HPV-associated malignancies, serving as a model for HPV therapeutic vaccine or T-cell receptor adoptive cell transfer. This increased killing was further amplified by IL-15 agonism employing N803. We further characterized that radiation or cisplatin induced immunogenic cell stress in three of three cell lines, and consequently demonstrated that upregulated surface expression of Fas and TRAIL-R2 death receptors at least in part mediated enhanced CTL-mediated lysis. In vivo, cisplatin-induced immunogenic cell stress synergistically potentiated CTL-mediated tumor control in a human model of HPV-associated malignancy. CONCLUSION: Standard of care radiation or cisplatin therapy induced immunogenic cell stress in preclinical models of HPV-associated malignancies, presenting an opportunity poised for exploitation by employing IO strategies in combination with standard of care.


Assuntos
Antineoplásicos , Carcinoma , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Interleucina-15/farmacologia , Linfócitos T Citotóxicos , Infecções por Papillomavirus/complicações , Padrão de Cuidado , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico
5.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34244306

RESUMO

BACKGROUND: There are highly effective treatment strategies for estrogen receptor (ER)+, progesterone receptor (PR)+, and HER2+ breast cancers; however, there are limited targeted therapeutic strategies for the 10%-15% of women who are diagnosed with triple-negative breast cancer. Here, we hypothesize that ER targeting drugs induce phenotypic changes to sensitize breast tumor cells to immune-mediated killing regardless of their ER status. METHODS: Real-time cell analysis, flow cytometry, qRT-PCR, western blotting, and multiplexed RNA profiling were performed to characterize ER+ and ER- breast cancer cells and to interrogate the phenotypic effects of ER targeting drugs. Sensitization of breast cancer cells to immune cell killing by the tamoxifen metabolite 4-hydroxytamoxifen (4-OHT) and fulvestrant was determined through in vitro health-donor natural killer cell 111IN-release killing assays. A syngeneic tumor study was performed to validate these findings in vivo. RESULTS: Pretreatment with tamoxifen metabolite 4-OHT or fulvestrant resulted in increased natural killer (NK)-mediated cell lysis of both ER+ and ER- breast cancer cells. Through multiplexed RNA profiling analysis of 4-OHT-treated ER+ and ER- cells, we identified increased activation of apoptotic and death receptor signaling pathways and identified G protein-coupled receptor for estrogen (GPR30) engagement as a putative mechanism for immunogenic modulation. Using the specific GPR30 agonist G-1, we demonstrate that targeted activation of GPR30 signaling resulted in increased NK cell killing. Furthermore, we show that knockdown of GPR30 inhibited 4-OHT and fulvestrant mediated increases to NK cell killing, demonstrating this is dependent on GPR30 expression. Moreover, we demonstrate that this mechanism remains active in a 4-OHT-resistant MCF7 cell line, showing that even in patient populations with ER+ tumors that are resistant to the cytotoxic effects of tamoxifen, 4-OHT treatment sensitizes them to immune-mediated killing. Moreover, we find that fulvestrant pretreatment of tumor cells synergizes with the IL-15 superagonist N-803 treatment of NK cells and sensitizes tumor cells to killing by programmed death-ligand 1 (PD-L1) targeting high-affinity natural killer (t-haNK) cells. Finally, we demonstrate that the combination of fulvestrant and N-803 is effective in triple-negative breast cancer in vivo. CONCLUSION: Together, these findings demonstrate a novel effect of ER targeting drugs on the interaction of ER+ and, surprisingly, ER- tumors cells with the immune system. This study is the first to demonstrate the potential use of ER targeting drugs as immunomodulatory agents in an ER agnostic manner and may inform novel immunotherapy strategies in breast cancer.


Assuntos
Receptores de Estrogênio/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/imunologia , Animais , Apoptose , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos
6.
J Immunother Cancer ; 9(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33741731

RESUMO

BACKGROUND: As heterogeneous tumors develop in the face of intact immunity, tumor cells harboring genomic or expression defects that favor evasion from T-cell detection or elimination are selected. For patients with such tumors, T cell-based immunotherapy alone infrequently results in durable tumor control. METHODS: Here, we developed experimental models to study mechanisms of T-cell escape and demonstrated that resistance to T-cell killing can be overcome by the addition of natural killer (NK) cells engineered to express a chimeric antigen receptor (CAR) targeting programmed death ligand-1 (PD-L1). RESULTS: In engineered models of tumor heterogeneity, PD-L1 CAR-engineered NK cells (PD-L1 t-haNKs) prevented the clonal selection of T cell-resistant tumor cells observed with T-cell treatment alone in multiple models. Treatment of heterogenous cancer cell populations with T cells resulted in interferon gamma (IFN-γ) release and subsequent upregulation of PD-L1 on tumor cells that escaped T-cell killing through defects in antigen processing and presentation, priming escape cell populations for PD-L1 dependent killing by PD-L1 t-haNKs in vitro and in vivo. CONCLUSIONS: These results describe the underlying mechanisms governing synergistic antitumor activity between T cell-based immunotherapy that results in IFN-γ production, upregulation of PD-L1 on T-cell escape cells, and the use of PD-L1 CAR-engineered NK cells to target and eliminate resistant tumor cell populations.


Assuntos
Edição de Genes , Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia Adotiva , Células Matadoras Naturais/transplante , Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos Quiméricos/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Linfócitos T/transplante , Evasão Tumoral , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Bases de Dados Genéticas , Antígenos HLA/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Antígenos Quiméricos/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Tumoral , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33602696

RESUMO

BACKGROUND: Different types of tumors have varying susceptibility to immunotherapy and hence require different treatment strategies; these cover a spectrum ranging from 'hot' tumors or those with high mutational burden and immune infiltrates that are more amenable to targeting to 'cold' tumors that are more difficult to treat due to the fewer targetable mutations and checkpoint markers. We hypothesized that an effective anti-tumor response requires multiple agents that would (1) engage the immune response and generate tumor-specific effector cells; (2) expand the number and breadth of the immune effector cells; (3) enable the anti-tumor activity of these immune cells in the tumor microenvironment; and (4) evolve the tumor response to widen immune effector repertoire. METHODS: A hexatherapy combination was designed and administered to MC38-CEA (warm) and 4T1 (cool) murine tumor models. The hexatherapy regimen was composed of adenovirus-based vaccine and IL-15 (interleukin-15) superagonist (N-803) to engage the immune response; anti-OX40 and anti-4-1BB to expand effector cells; anti-PD-L1 (anti-programmed death-ligand 1) to enable anti-tumor activity; and docetaxel to promote antigen spread. Primary and metastatic tumor growth inhibition were measured. The generation of anti-tumor immune effector cells was analyzed using flow cytometry, ELISpot (enzyme-linked immunospot), and RNA analysis. RESULTS: The MC38-CEA and 4T1 tumor models have differential sensitivities to the combination treatments. In the 'warm' MC38-CEA, combinations with two to five agents resulted in moderate therapeutic benefit while the hexatherapy regimen outperformed all these combinations. On the other hand, the hexatherapy regimen was required in order to decrease the primary and metastatic tumor burden in the 'cool' 4T1 model. In both models, the hexatherapy regimen promoted CD4+ and CD8+ T cell proliferation and activity. Furthermore, the hexatherapy regimen induced vaccine-specific T cells and stimulated antigen cascade. The hexatherapy regimen also limited the immunosuppressive T cell and myeloid derived suppressor cell populations, and also decreased the expression of exhaustion markers in T cells in the 4T1 model. CONCLUSION: The hexatherapy regimen is a strategic combination of immuno-oncology agents that can engage, expand, enable, and evolve the immune response and can provide therapeutic benefits in both MC38-CEA (warm) and 4T1 (cool) tumor models.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Docetaxel/administração & dosagem , Inibidores de Checkpoint Imunológico/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Vacinas de DNA/administração & dosagem , Animais , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Terapia Combinada , Docetaxel/farmacologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Interleucina-15/agonistas , Camundongos , Receptores OX40/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Vacinas de DNA/genética , Vacinas de DNA/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Res Commun ; 1(3): 127-139, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35765577

RESUMO

Chordoma is a rare tumor derived from notochord remnants that has a propensity to recur and metastasize despite conventional multimodal treatment. Cancer stem cells (CSC) are implicated in chordoma's resistant and recurrent behavior; thus strategies that target CSCs are of particular interest. Using in vitro cytotoxicity models, we demonstrated that anti-programmed death-ligand 1 (N-601) and anti-epidermal growth factor receptor (cetuximab) antibodies enhanced lysis of chordoma cells by healthy donor and chordoma patient NK cells through antibody-dependent cellular cytotoxicity (ADCC). Treatment of NK cells with an IL-15 superagonist complex (N-803) increased their cytotoxicity against chordoma cells, which was further enhanced by treatment with N-601 and/or cetuximab. PD-L1-targeted chimeric antigen receptor NK cells (PD-L1 t-haNKs) were also effective against chordoma cells. CSCs were preferentially vulnerable to NK cell killing in the presence of N-601 and N-803. Flow cytometric analysis of a chordoma CSC population showed that CSCs expressed significantly more NK activating ligand B7-H6 and PD-L1 than non-CSCs, thus explaining a potential mechanism of selective targeting. These data suggest that chordoma may be effectively targeted by combinatorial NK cell-mediated immunotherapeutic approaches and that the efficacy of these approaches in chordoma and other CSC-driven tumor types should be investigated further in clinical studies.


Assuntos
Antígeno B7-H1 , Cordoma , Humanos , Cetuximab , Cordoma/terapia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Células Matadoras Naturais , Imunoterapia , Anticorpos , Células-Tronco Neoplásicas
9.
Cancer Immunol Res ; 9(2): 239-252, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33355290

RESUMO

Immunotherapy of immunologically cold solid tumors may require multiple agents to engage immune effector cells, expand effector populations and activities, and enable immune responses in the tumor microenvironment (TME). To target these distinct phenomena, we strategically chose five clinical-stage immuno-oncology agents, namely, (i) a tumor antigen-targeting adenovirus-based vaccine (Ad-CEA) and an IL15 superagonist (N-803) to activate tumor-specific T cells, (ii) OX40 and GITR agonists to expand and enhance the activated effector populations, and (iii) an IDO inhibitor (IDOi) to enable effector-cell activity in the TME. Flow cytometry, T-cell receptor (TCR) sequencing, and RNA-sequencing (RNA-seq) analyses showed that in the CEA-transgenic murine colon carcinoma (MC38-CEA) tumor model, Ad-CEA + N-803 combination therapy resulted in immune-mediated antitumor effects and promoted the expression of costimulatory molecules on immune subsets, OX40 and GITR, and the inhibitory molecule IDO. Treatment with Ad-CEA + N-803 + OX40 + GITR + IDOi, termed the pentatherapy regimen, resulted in the greatest inhibition of tumor growth and protection from tumor rechallenge without toxicity. Monotherapy with any of the agents had little to no antitumor activity, whereas combining two, three, or four agents had minimal antitumor effects. Immune analyses demonstrated that the pentatherapy combination induced CD4+ and CD8+ T-cell activity in the periphery and tumor, and antitumor activity associated with decreased regulatory T-cell (Treg) immunosuppression in the TME. The pentatherapy combination also inhibited tumor growth and metastatic formation in 4T1 and LL2-CEA murine tumor models. This study provides the rationale for the combination of multimodal immunotherapy agents to engage, enhance, and enable adaptive antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Neoplasias do Colo/terapia , Imunoterapia/métodos , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia
10.
Elife ; 92020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633234

RESUMO

Failed T cell-based immunotherapies in the presence of genomic alterations in antigen presentations pathways may be overcome by NK cell-based immunotherapy. This approach may still be limited by the presence of immunosuppressive myeloid populations. Here, we demonstrate that NK cells (haNKs) engineered to express a PD-L1 chimeric antigen receptor (CAR) haNKs killed a panel of human and murine head and neck cancer cells at low effector-to-target ratios in a PD-L1-dependent fashion. Treatment of syngeneic tumors resulted in CD8 and PD-L1-dependent tumor rejection or growth inhibition and a reduction in myeloid cells endogenously expressing high levels of PD-L1. Treatment of xenograft tumors resulted in PD-L1-dependent tumor growth inhibition. PD-L1 CAR haNKs reduced levels of macrophages and other myeloid cells endogenously expressing high PD-L1 in peripheral blood from patients with head and neck cancer. The clinical study of PD-L1 CAR haNKs is warranted.


Assuntos
Antígeno B7-H1/metabolismo , Células Matadoras Naturais/fisiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Receptores de Antígenos Quiméricos/metabolismo
11.
J Immunother Cancer ; 8(1)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32439799

RESUMO

BACKGROUND: Although immune checkpoint inhibitors have revolutionized cancer treatment, clinical benefit with this class of agents has been limited to a subset of patients. Hence, more effective means to target tumor cells that express immune checkpoint molecules should be developed. For the first time, we report a novel natural killer (NK) cell line, programmed death-ligand 1 (PD-L1) targeting high-affinity natural killer (t-haNK), which was derived from NK-92 and was engineered to express high-affinity CD16, endoplasmic reticulum-retained interleukin (IL)-2, and a PD-L1-specific chimeric antigen receptor (CAR). We show that PD-L1 t-haNK cells also retained the expression of native NK receptors and carried a high content of granzyme and perforin granules. METHODS: NanoString, flow cytometry, and immunofluorescence analyses were performed to characterize the phenotype of irradiated PD-L1 t-haNK cells. In vitro PD-L1 t-haNK cell activity against cancer cell lines and human peripheral blood mononuclear cells (PBMCs) was determined via flow-based and 111In-release killing assays. The antitumor effect of PD-L1 t-haNK cells in vivo was investigated using MDA-MB-231, H460, and HTB1 xenograft models in NOD-scid IL2Rgammanull (NSG) mice. Additionally, the antitumor effect of PD-L1 t-haNK cells, in combination with anti-PD-1 and N-803, an IL-15 superagonist, was evaluated using mouse oral cancer 1 syngeneic model in C57BL/6 mice. RESULTS: We show that PD-L1 t-haNK cells expressed PD-L1-targeting CAR and CD16, retained the expression of native NK receptors, and carried a high content of granzyme and perforin granules. In vitro, we demonstrate the ability of irradiated PD-L1 t-haNK cells to lyse 20 of the 20 human cancer cell lines tested, including triple negative breast cancer (TNBC) and lung, urogenital, and gastric cancer cells. The cytotoxicity of PD-L1 t-haNK cells was correlated to the PD-L1 expression of the tumor targets and can be improved by pretreating the targets with interferon (IFN)-γ. In vivo, irradiated PD-L1 t-haNK cells inhibited the growth of engrafted TNBC and lung and bladder tumors in NSG mice. The combination of PD-L1 t-haNK cells with N-803 and anti-PD-1 antibody resulted in superior tumor growth control of engrafted oral cavity squamous carcinoma tumors in C57BL/6 mice. In addition, when cocultured with human PBMCs, PD-L1 t-haNK cells preferentially lysed the myeloid-derived suppressor cell population but not other immune cell types. CONCLUSION: These studies demonstrate the antitumor efficacy of PD-L1 t-haNK cells and provide a rationale for the potential use of these cells in clinical studies.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/transplante , Células Supressoras Mieloides/imunologia , Neoplasias/terapia , Animais , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Terapia Combinada/métodos , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-2/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Células Supressoras Mieloides/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Engenharia de Proteínas , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de IgG/genética , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Immunother Cancer ; 8(1)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32345623

RESUMO

BACKGROUND: Natural killer (NK) cells are immune cells capable of killing virally infected cells and tumor cells without the need for antigen stimulation. Tumors, however, can create a suppressive microenvironment that decreases NK function. A feature of many tumors is hypoxia (low oxygen perfusion), which has been previously shown to decrease NK function. A high affinity NK (haNK) cell has been engineered to express a high affinity CD16 receptor as well as internal interleukin (IL)-2 for increased antibody-dependent cellular cytotoxicity (ADCC) and activation, respectively. We sought to investigate the tolerance of NK cells versus haNK cells to hypoxia. METHODS: We exposed healthy donor (HD) NK and X-irradiated haNK cells to normoxia (20% oxygen) as well as hypoxia (0% oxygen) and investigated their ability to kill prostate, breast and lung tumor cell lines after 5 hours. We also used monoclonal antibodies cetuximab (anti-EGFR) or avelumab (antiprogrammed death-ligand 1) to investigate the effects of hypoxia on NK ADCC. Genomic and proteomic analyzes were done to determine the effect of hypoxia on the expression of factors important to NK cell function. RESULTS: While HD NK cell cytolytic abilities were markedly and significantly impaired under hypoxic conditions, haNK cells maintained killing capacity under hypoxic conditions. NK killing, serial killing and ADCC were maintained under hypoxia in haNK cells. IL-2 has been previously implicated in serial killing and perforin regeneration and thus the endogenous IL-2 produced by haNK cells is likely a driver of the maintained killing capacity of haNK cells under hypoxic conditions. Activation of signal transducer and activator of transcription 3 (STAT3) is not seen in haNKs under hypoxia but is significant in HD NK cells. Pharmaceutical activation of STAT3 in haNKs led to reduced killing, implicating active STAT3 in reduced NK cell function. CONCLUSIONS: In contrast to HD NK cells, haNK cells are resistant to acute hypoxia. The potent cytolytic function of haNK cells was maintained in an environment comparable to what would be encountered in a tumor. The data presented here provide an additional mechanism of action for haNK cells that are currently being evaluated in clinical trials for several tumor types.


Assuntos
Hipóxia Celular/imunologia , Células Matadoras Naturais/metabolismo , Proteômica/métodos , Linhagem Celular Tumoral , Humanos
13.
Oncotarget ; 7(52): 86359-86373, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27861156

RESUMO

Natural killer (NK) cells are known to play a role in mediating innate immunity, in enhancing adaptive immune responses, and have been implicated in mediating anti-tumor responses via antibody-dependent cell-mediated cytotoxicity (ADCC) by reactivity of CD16 with the Fc region of human IgG1 antibodies. The NK-92 cell line, derived from a lymphoma patient, has previously been well characterized and adoptive transfer of irradiated NK-92 cells has demonstrated safety and shown preliminary evidence of clinical benefit in cancer patients. The NK-92 cell line, devoid of CD16, has now been engineered to express the high affinity (ha) CD16 V158 FcγRIIIa receptor, as well as engineered to express IL-2; IL-2 has been shown to replenish the granular stock of NK cells, leading to enhanced perforin- and granzyme-mediated lysis of tumor cells. The studies reported here show high levels of granzyme in haNK cells, and demonstrate the effects of irradiation of haNK cells on multiple phenotypic markers, viability, IL-2 production, and lysis of a spectrum of human tumor cells. Studies also compare endogenous irradiated haNK lysis of tumor cells with that of irradiated haNK-mediated ADCC using cetuximab, trastuzumab and pertuzumab monoclonal antibodies. These studies thus provide the rationale for the potential use of irradiated haNK cells in adoptive transfer studies for a range of human tumor types. Moreover, since only approximately 10% of humans are homozygous for the high affinity V CD16 allele, these studies also provide the rationale for the use of irradiated haNK cells in combination with IgG1 anti-tumor monoclonal antibodies.


Assuntos
Transferência Adotiva , Granzimas/imunologia , Células Matadoras Naturais/imunologia , Receptores de IgG/genética , Animais , Citotoxicidade Celular Dependente de Anticorpos , Antígeno B7-H1/análise , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Engenharia Genética , Humanos , Imunoglobulina G/uso terapêutico , Interleucina-2/genética , Células Matadoras Naturais/enzimologia , Células Matadoras Naturais/efeitos da radiação , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores de IgG/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA