Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e30925, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38778996

RESUMO

In the realm of food nutritional security, the development of mineral-rich grains assumes a pivotal role in combating malnutrition. Within the scope of the current investigation, we endeavoured to discern the transcripts accountable for the improved accumulation of grain-Fe within Indian barnyard millet. This pursuit entailed transcriptome sequencing of genotypes BAR-1433 (with high Fe content) and BAR-1423 (with low Fe content) during two distinct stages of spike development-spike emergence and milking stage. In the context of spike emergence, we identified a cohort of 895 up-regulated transcripts and 126 down-regulated transcripts that delineated the difference between the high and low grain-Fe genotypes. In contrast, during the milking stage, the tally of up-regulated transcripts reached 436, while down-regulated transcripts numbered 285. The transcripts that consistently ascended in both developmental stages underwent functional annotation, aligning their roles with nucleolar proteins, metal-nicotianamine transporters, ribonucleoprotein complexes, vinorine synthases, cellulose synthases, auxin response factors, embryogenesis abundant proteins, cytochrome c oxidases, and zinc finger BED domain-containing proteins. Meanwhile, a heterogeneous spectrum of transcripts exhibited differential expression and upregulation throughout the distinct stages. These transcripts encompassed various facets, such as ABC Transporter family proteins, Calcium-dependent kinase family, Ferritin, Metal ion binding, Iron-sulfur cluster binding, Cytochrome family, Zinc finger transcription factor family, Ferredoxin-NADP reductase type 1 family, Putative laccase, Multicopper oxidase family, and Terpene synthase family. To authenticate the reliability of these transcripts, six contigs representing probable functions, including metal transporters, iron sulfur coordination, metal ion binding, auxin-responsive GH3-like protein 2, and cytochrome P450 71B16, were harnessed for primer design. Subsequently, these primers were utilized in the validation process through qRT-PCR, with the outcomes aligning harmoniously with the transcriptome results. This study chronicles a constellation of genes linked to elevated iron content within barnyard millet, showcasing a proof of concept for leveraging transcriptome insights in marker-assisted selection to fortify barnyard millet with iron. This marks the inaugural comprehensive transcriptome analysis delineating transcripts associated with varying levels of grain-iron content during the panicle developmental stages within the barnyard millet paradigm.

2.
Mol Biol Rep ; 50(8): 6691-6701, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37378750

RESUMO

BACKGROUND: Peanut (Arachis hypogaea L.) is one of the valuable oilseed crops grown in drought-prone areas worldwide. Drought severely limits peanut production and productivity significantly. METHOD AND RESULTS: In order to decipher the drought tolerance mechanism in peanut under drought stress, RNA sequencing was performed in TAG - 24 (drought tolerant genotype) and JL-24 (drought susceptible genotype). Approximately 51 million raw reads were generated from four different libraries of two genotypes subjected to drought stress exerted by 20% PEG 6000 stress and control conditions, of which ~ 41 million (80.87%) filtered reads were mapped to the Arachis hypogaea L. reference genome. The transcriptome analysis detected 1,629 differentially expressed genes (DEGs), 186 genes encoding transcription factors (TFs) and 30,199 SSR among the identified DEGs. Among the differentially expressed TF encoding genes, the highest number of genes were WRKY followed by bZIP, C2H2, and MYB during drought stress. The comparative analysis between the two genotypes revealed that TAG-24 exhibits activation of certain key genes and transcriptional factors that are involved in essential biological processes. Specifically, TAG-24 showed activation of genes involved in the plant hormone signaling pathway such as PYL9, Auxin response receptor gene, and ABA. Additionally, genes related to water deprivation such as LEA protein and those involved in combating oxidative damage such as Glutathione reductase were also found to be activated in TAG-24. CONCLUSION: This genome-wide transcription map, therefore, provides a valuable tool for future transcript profiling under drought stress and enriches the genetic resources available for this important oilseed crop.


Assuntos
Arachis , Fabaceae , Arachis/genética , Arachis/metabolismo , Secas , Perfilação da Expressão Gênica/métodos , Fabaceae/genética , Mapeamento Cromossômico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética
3.
Sci Rep ; 12(1): 276, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997160

RESUMO

Pearl millet is an important staple food crop of poor people and excels all other cereals due to its unique features of resilience to adverse climatic conditions. It is rich in micronutrients like iron and zinc and amenable for focused breeding for these micronutrients along with high yield. Hence, this is a key to alleviate malnutrition and ensure nutritional security. This study was conducted to identify and validate candidate genes governing grain iron and zinc content enabling the desired modifications in the genotypes. Transcriptome sequencing using ION S5 Next Generation Sequencer generated 43.5 million sequence reads resulting in 83,721 transcripts with N50 of 597 bp and 84.35% of transcripts matched with the pearl millet genome assembly. The genotypes having high iron and zinc showed differential gene expression during different stages. Of which, 155 were up-regulated and 251 were down-regulated while during flowering stage and milking stage 349 and 378 transcripts were differentially expressed, respectively. Gene annotation and GO term showed the presence of transcripts involved in metabolic activities associated with uptake and transport of iron and zinc. Information generated will help in gaining insights into iron and zinc metabolism and develop genotypes with high yield, grain iron and zinc content.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genes de Plantas , Genoma de Planta , Ferro/metabolismo , Proteínas de Membrana Transportadoras/genética , Pennisetum/genética , Proteínas de Plantas/genética , Transcriptoma , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Valor Nutritivo , Pennisetum/crescimento & desenvolvimento , Pennisetum/metabolismo , Proteínas de Plantas/metabolismo , RNA-Seq
4.
Sci Rep ; 11(1): 20620, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663808

RESUMO

Little millet is a climate-resilient and high-nutrient value plant. The lack of molecular markers severely limits the adoption of modern genomic approaches in millet breeding studies. Here the transcriptome of three samples were sequenced. A total of 4443 genic-SSR motifs were identified in 30,220 unigene sequences. SSRs were found at a rate of 12.25 percent, with an average of one SSR locus per 10 kb. Among different repeat motifs, tri-nucleotide repeat (66.67) was the most abundant one, followed by di- (27.39P), and tetra- (3.83P) repeats. CDS contained fewer motifs with the majority of tri-nucleotides, while 3' and 5' UTR carry more motifs but have shorter repeats. Functional annotation of unigenes containing microsatellites, revealed that most of them were linked to metabolism, gene expression regulation, and response to environmental stresses. Fifty primers were randomly chosen and validated in five little millet and 20 minor millet genotypes; 48% showed polymorphism, with a high transferability (70%) rate. Identified microsatellites can be a noteworthy resource for future research into QTL-based breeding, genetic resource conservation, MAS selection, and evolutionary genetics.


Assuntos
Repetições de Microssatélites/genética , Panicum/genética , Primers do DNA/genética , Etiquetas de Sequências Expressas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Marcadores Genéticos/genética , Genoma de Planta/genética , Genômica , Genótipo , Motivos de Nucleotídeos/genética , Panicum/metabolismo , Filogenia , Melhoramento Vegetal/métodos , Polimorfismo Genético/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA