Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(4): 2727-2733, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553890

RESUMO

Rapid, accurate, and low-cost detection of SARS-CoV-2 is crucial to contain the transmission of COVID-19. Here, we present a cost-effective smartphone-based device coupled with machine learning-driven software that evaluates the fluorescence signals of the CRISPR diagnostic of SARS-CoV-2. The device consists of a three-dimensional (3D)-printed housing and low-cost optic components that allow excitation of fluorescent reporters and selective transmission of the fluorescence emission to a smartphone. Custom software equipped with a binary classification model has been developed to quantify the acquired fluorescence images and determine the presence of the virus. Our detection system has a limit of detection (LoD) of 6.25 RNA copies/µL on laboratory samples and produces a test accuracy of 95% and sensitivity of 97% on 96 nasopharyngeal swab samples with transmissible viral loads. Our quantitative fluorescence score shows a strong correlation with the quantitative reverse transcription polymerase chain reaction (RT-qPCR) Ct values, offering valuable information of the viral load and, therefore, presenting an important advantage over nonquantitative readouts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA