Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 45(5): 3059-3077, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37726433

RESUMO

The liver, as a crucial metabolic organ, undergoes significant pathological changes during the aging process, which can have a profound impact on overall health. To gain a comprehensive understanding of these alterations, we employed data-driven approaches, along with biochemical methods, histology, and immunohistochemistry techniques, to systematically investigate the effects of aging on the liver. Our study utilized a well-established rat aging model provided by the National Institute of Aging. Systems biology approaches were used to analyze genome-wide transcriptomics data from liver samples obtained from young (4-5 months old) and aging (20-21 months old) Fischer 344 rats. Our findings revealed pathological changes occurring in various essential biological processes in aging livers. These included mitochondrial dysfunction, increased oxidative/nitrative stress, decreased NAD + content, impaired amino acid and protein synthesis, heightened inflammation, disrupted lipid metabolism, enhanced apoptosis, senescence, and fibrosis. These results were validated using independent datasets from both human and rat aging studies. Furthermore, by employing co-expression network analysis, we identified novel driver genes responsible for liver aging, confirmed our findings in human aging subjects, and pointed out the cellular localization of the driver genes using single-cell RNA-sequencing human data. Our study led to the discovery and validation of a liver-specific gene, proprotein convertase subtilisin/kexin type 9 (PCSK9), as a potential therapeutic target for mitigating the pathological processes associated with aging in the liver. This finding envisions new possibilities for developing interventions aimed to improve liver health during the aging process.


Assuntos
Pró-Proteína Convertase 9 , Transcriptoma , Humanos , Ratos , Animais , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Fígado/metabolismo , Envelhecimento/genética
2.
J Neuroendocrinol ; 35(11): e13334, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37667574

RESUMO

In addition to being recognised for involvement in cardiovascular control and hydromineral balance, the renin-angiotensin system (RAS) has also been associated with the neuroendocrine control of energy balance. One of the main brain sites for angiotensin II (ANG II)/type 1 receptor (AT1 R) signalling is the subfornical organ (SFO), a circumventricular organ related to the control of autonomic functions, motivated behaviours and energy metabolism. Thus, we hypothesised that circulating ANG II may act on the SFO AT1 R receptors to integrate metabolic and hydromineral balance. We evaluated whether food deprivation can modulate systemic RAS activity and Agrt1a brain expression, and if ANG II/AT1 R signalling influences the hypothalamic expression of mRNAs encoding neuropeptides and food and water ingestion in fed and fasted Wistar rats. We found a significant increase in both ANG I and ANG II plasma levels after 24 and 48 h of fasting. Expression of Agrt1a mRNA in the SFO and paraventricular nucleus (PVN) also increased after food deprivation for 48 h. Treatment of fasted rats with low doses of losartan in drinking water attenuated the decrease in glycemia and meal-associated water intake without changing the expression in PVN or arcuate nucleus of mRNAs encoding selected neuropeptides related to energy homeostasis control. These findings point to a possible role of peripheral ANG II/SFO-AT1 R signalling in the control of refeeding-induced thirst. On the other hand, intracerebroventricular losartan treatment decreased food and water intake over dark time in fed but not in fasted rats.


Assuntos
Jejum , Órgão Subfornical , Animais , Masculino , Ratos , Angiotensina II/farmacologia , Encéfalo/metabolismo , Jejum/metabolismo , Losartan/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Wistar , Receptor Tipo 1 de Angiotensina/metabolismo , Órgão Subfornical/metabolismo
3.
J Neuroendocrinol ; 30(12): e12654, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30365188

RESUMO

The subfornical organ (SFO) lacks the normal blood-brain barrier and senses the concentrations of many different circulating signals, including glucose and angiotensin II (ANG II). ANG II has recently been implicated in the control of food intake and body weight gain. The present study assessed whether single SFO neurones sense changes in glucose and ANG II, and also whether changes in glucose concentration alter the responsiveness of these neurones to ANG II. SFO neurones dissociated from male Sprague-Dawley rats (100-175 g) were used. We first examined whether glucose concentration modulates AT1 receptor expression. Similar AT1a mRNA expression levels were found at glucose concentrations of 1, 5 and 10 mmol L-1 in dissociated SFO neurones. Glucose responsiveness of SFO neurones was assessed using perforated current-clamp recordings and switching between 5 and 10 mmol L-1 glucose artificial cerebrospinal fluid to classify single neurones as nonresponsive (nGS), glucose-excited (GE) or glucose-inhibited (GI). In total, 26.7% of the SFO neurones were GI (n = 24 of 90), 21.1% were GE (n = 19 of 90) and 52.2% were nGS (n = 47 of 90). Once classified, the effects of 10 nmol L-1 ANG II on the excitability of these neurones were tested, with 52% of GE (n = 10 of 19), 71% of GI (n = 17 of 24) and 43% of nGS (n = 20 of 47) neurones being ANG II sensitive. Finally, we tested whether acute changes in glucose concentration modified the response to ANG II and showed that some neurones (4/17) only respond to ANG II at 10 mmol L-1 glucose. Our data demonstrate that the same SFO neurone can sense glucose and ANG II and that acute changes in glucose concentration may change ANG II responsiveness.


Assuntos
Angiotensina II/farmacologia , Glucose/metabolismo , Glucose/farmacologia , Órgão Subfornical/efeitos dos fármacos , Órgão Subfornical/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Potenciais da Membrana/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Receptor Tipo 1 de Angiotensina/biossíntese , Órgão Subfornical/citologia
4.
Exp Physiol ; 102(11): 1397-1404, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833692

RESUMO

NEW FINDINGS: What is the central question of this study? The central goal of this study was to understand the effects of central angiotensin-(1-7) on basal and osmotically stimulated water intake in rats. What is the main finding and its importance? This study demonstrated that central administration of angiotensin-(1-7) did not induce thirst in basal conditions but increased water intake after osmotic stimulation, such as water deprivation and salt loading. These results indicate a new function for this peptide, which, in turn, allows for future research on the mechanisms through which angiotensin-(1-7) influences osmotic thirst. Angiotensin-(1-7) [Ang-(1-7)] is generated by type 2 angiotensin-converting enzyme (ACE2) and binds to the MAS receptor. Although it is well known that Ang-(1-7) functionally antagonizes the effects of the classical renin-angiotensin system in several situations, the role of Ang-(1-7) in hydromineral homeostasis is not clear. The aim of this study was to assess the role of Ang-(1-7) on neuroendocrine responses to hyperosmolality in rats. Male Wistar rats were divided into the following three groups: control; 24 h of water deprivation (WD); and 24 h of salt loading (SL; 1.8% NaCl). Intracerebroventricular (i.c.v.) injections of Ang-(1-7) or vehicle were given to assess water intake and plasma concentration of vasopressin. Additionally, the brains from control and WD groups were collected to evaluate gene expression in the subfornical organ (SFO), paraventricular nucleus (PVN) and supraoptic nucleus (SON). It was found that i.c.v. Ang-(1-7) did not change water and salt intake in control rats; however, Ang-(1-7) increased water intake after WD and SL, with no change in salt intake. Plasma vasopressin was not changed by i.c.v. Ang-(1-7) in control or WD rats. Moreover, WD increased Mas gene expression in the SON and PVN, with no changes in Ace2 mRNA levels. In conclusion, Ang-(1-7) increases thirst after osmotic stimuli, indicating that a previous sensitization to its action is necessary. This finding is consistent with the increased Mas gene expression in the PVN and SON after water deprivation.


Assuntos
Angiotensina I/administração & dosagem , Ingestão de Líquidos/efeitos dos fármacos , Pressão Osmótica , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Órgão Subfornical/efeitos dos fármacos , Núcleo Supraóptico/efeitos dos fármacos , Sede/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2 , Animais , Injeções Intraventriculares , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Cloreto de Sódio/administração & dosagem , Órgão Subfornical/metabolismo , Núcleo Supraóptico/metabolismo , Regulação para Cima , Vasopressinas/sangue , Privação de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA