Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1152444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288304

RESUMO

Objective: Acyl-CoA-binding protein (ACBP)/diazepam-binding inhibitor has lately been described as an endocrine factor affecting food intake and lipid metabolism. ACBP is dysregulated in catabolic/malnutrition states like sepsis or systemic inflammation. However, regulation of ACBP has not been investigated in conditions with impaired kidney function, so far. Design/methods: Serum ACBP concentrations were investigated by enzyme-linked immunosorbent assay i) in a cohort of 60 individuals with kidney failure (KF) on chronic haemodialysis and compared to 60 individuals with a preserved kidney function; and ii) in a human model of acute kidney dysfunction (AKD). In addition, mACBP mRNA expression was assessed in two CKD mouse models and in two distinct groups of non-CKD mice. Further, mRNA expression of mACBP was measured in vitro in isolated, differentiated mouse adipocytes - brown and white - after exposure to the uremic agent indoxyl sulfate. Results: Median [interquartile range] serum ACBP was almost 20-fold increased in KF (514.0 [339.3] µg/l) compared to subjects without KF (26.1 [39.1] µg/l) (p<0.001). eGFR was the most important, inverse predictor of circulating ACBP in multivariate analysis (standardized ß=-0.839; p<0.001). Furthermore, AKD increased ACBP concentrations almost 3-fold (p<0.001). Increased ACBP levels were not caused by augmented mACBP mRNA expression in different tissues of CKD mice in vivo or in indoxyl sulfate-treated adipocytes in vitro. Conclusions: Circulating ACBP inversely associates with renal function, most likely through renal retention of the cytokine. Future studies need to investigate ACBP physiology in malnutrition-related disease states, such as CKD, and to adjust for markers of renal function.


Assuntos
Inibidor da Ligação a Diazepam , Desnutrição , Camundongos , Humanos , Animais , Indicã/metabolismo , Proteínas de Transporte/genética , Rim/metabolismo , Diazepam/metabolismo , RNA Mensageiro/metabolismo , Desnutrição/metabolismo
2.
Front Nutr ; 8: 741249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646852

RESUMO

Recent studies have shown an association between iron homeostasis, obesity and diabetes. In this work, we investigated the differences in the metabolic status and inflammation in liver, pancreas and visceral adipose tissue of leptin receptor-deficient db/db mice dependent on high iron concentration diet. 3-month-old male BKS-Leprdb/db/JOrlRj (db/db) mice were divided into two groups, which were fed with different diets containing high iron (29 g/kg, n = 57) or standard iron (0.178 g/kg; n = 42) concentrations for 4 months. As anticipated, standard iron-fed db/db mice developed obesity and diabetes. However, high iron-fed mice exhibited a wide heterogeneity. By dividing into two subgroups at the diabetes level, non-diabetic subgroup 1 (<13.5 mmol/l, n = 30) significantly differed from diabetic subgroup two (>13.5 mmol/l, n = 27). Blood glucose concentration, HbA1c value, inflammation markers interleukin six and tumor necrosis factor α and heme oxygenase one in visceral adipose tissue were reduced in subgroup one compared to subgroup two. In contrast, body weight, C-peptide, serum insulin and serum iron concentrations, pancreatic islet and signal ratio as well as cholesterol, LDL and HDL levels were enhanced in subgroup one. While these significant differences require further studies and explanation, our results might also explain the often-contradictory results of the metabolic studies with db/db mice.

3.
Front Cell Neurosci ; 15: 701673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267628

RESUMO

Microglia are the brain's immunocompetent macrophages with a unique feature that allows surveillance of the surrounding microenvironment and subsequent reactions to tissue damage, infection, or homeostatic perturbations. Thereby, microglia's striking morphological plasticity is one of their prominent characteristics and the categorization of microglial cell function based on morphology is well established. Frequently, automated classification of microglial morphological phenotypes is performed by using quantitative parameters. As this process is typically limited to a few and especially manually chosen criteria, a relevant selection bias may compromise the resulting classifications. In our study, we describe a novel microglial classification method by morphological evaluation using a convolutional neuronal network on the basis of manually selected cells in addition to classical morphological parameters. We focused on four microglial morphologies, ramified, rod-like, activated and amoeboid microglia within the murine hippocampus and cortex. The developed method for the classification was confirmed in a mouse model of ischemic stroke which is already known to result in microglial activation within affected brain regions. In conclusion, our classification of microglial morphological phenotypes using machine learning can serve as a time-saving and objective method for post-mortem characterization of microglial changes in healthy and disease mouse models, and might also represent a useful tool for human brain autopsy samples.

4.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557206

RESUMO

Treatment-induced neuropathy in diabetes (TIND) is defined by the occurrence of an acute neuropathy within 8 weeks of an abrupt decrease in glycated hemoglobin-A1c (HbA1c). The underlying pathogenic mechanisms are still incompletely understood with only one mouse model being explored to date. The aim of this study was to further explore the hypothesis that an abrupt insulin-induced fall in HbA1c may be the prime causal factor of developing TIND. BB/OKL (bio breeding/OKL, Ottawa Karlsburg Leipzig) diabetic rats were randomized in three groups, receiving insulin treatment by implanted subcutaneous osmotic insulin pumps for 3 months, as follows: Group one received 2 units per day; group two 1 unit per day: and group three 1 unit per day in the first month, followed by 2 units per day in the last two months. We serially examined blood glucose and HbA1c levels, motor- and sensory/mixed afferent conduction velocities (mNCV and csNCV) and peripheral nerve morphology, including intraepidermal nerve fiber density and numbers of Iba-1 (ionized calcium binding adaptor molecule 1) positive macrophages in the sciatic nerve. Only in BB/OKL rats of group three, with a rapid decrease in HbA1c of more than 2%, did we find a significant decrease in mNCV in sciatic nerves (81% of initial values) after three months of treatment as compared to those group three rats with a less marked decrease in HbA1c <2% (mNCV 106% of initial values, p ≤ 0.01). A similar trend was observed for sensory/mixed afferent nerve conduction velocities: csNCV were reduced in BB/OKL rats with a rapid decrease in HbA1c >2% (csNCV 90% of initial values), compared to those rats with a mild decrease <2% (csNCV 112% of initial values, p ≤ 0.01). Moreover, BB/OKL rats of group three with a decrease in HbA1c >2% showed significantly greater infiltration of macrophages by about 50% (p ≤ 0.01) and a decreased amount of calcitonin gene related peptide (CGRP) positive nerve fibers as compared to the animals with a milder decrease in HbA1c. We conclude that a mild acute neuropathy with inflammatory components was induced in BB/OKL rats as a consequence of an abrupt decrease in HbA1c caused by high-dose insulin treatment. This experimentally induced neuropathy shares some features with TIND in humans and may be further explored in studies into the pathogenesis and treatment of TIND.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Neuropatias Diabéticas/patologia , Modelos Animais de Doenças , Hemoglobinas Glicadas/metabolismo , Insulina/toxicidade , Animais , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Neuropatias Diabéticas/induzido quimicamente , Hipoglicemiantes/toxicidade , Masculino , Condução Nervosa/efeitos dos fármacos , Ratos
5.
Eur J Endocrinol ; 183(3): 233-244, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32508317

RESUMO

BACKGROUND: Patients with chronic kidney disease (CKD) have a high risk of premature cardiovascular diseases (CVD) and show increased mortality. Pro-neurotensin (Pro-NT) was associated with metabolic diseases and predicted incident CVD and mortality. However, Pro-NT regulation in CKD and its potential role linking CKD and mortality have not been investigated, so far. METHODS: In a central lab, circulating Pro-NT was quantified in three independent cohorts comprising 4715 participants (cohort 1: patients with CKD; cohort 2: general population study; and cohort 3: non-diabetic population study). Urinary Pro-NT was assessed in part of the patients from cohort 1. In a 4th independent cohort, serum Pro-NT was further related to mortality in patients with advanced CKD. Tissue-specific Nts expression was further investigated in two mouse models of diabetic CKD and compared to non-diabetic control mice. RESULTS: Pro-NT significantly increased with deteriorating renal function (P < 0.001). In meta-analysis of cohorts 1-3, Pro-NT was significantly and independently associated with estimated glomerular filtration rate (P ≤ 0.002). Patients in the middle/high Pro-NT tertiles at baseline had a higher all-cause mortality compared to the low Pro-NT tertile (Hazard ratio: 2.11, P = 0.046). Mice with severe diabetic CKD did not show increased Nts mRNA expression in different tissues compared to control animals. CONCLUSIONS: Circulating Pro-NT is associated with impaired renal function in independent cohorts comprising 4715 subjects and is related to all-cause mortality in patients with end-stage kidney disease. Our human and rodent data are in accordance with the hypotheses that Pro-NT is eliminated by the kidneys and could potentially contribute to increased mortality observed in patients with CKD.


Assuntos
Neurotensina/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos Transversais , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Rim/metabolismo , Rim/fisiopatologia , Estudos Longitudinais , Masculino , Metanálise como Assunto , Camundongos , Pessoa de Meia-Idade , Neurotensina/sangue , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/fisiopatologia
6.
Horm Metab Res ; 52(9): 685-688, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32252105

RESUMO

Cartilage oligomeric matrix protein (COMP)-Angiopoietin-1 is a potent angiopoietin-1 (Ang-1) variant that possesses therapeutic potential in angiogenesis and vascular endothelial dysfunction. Noteworthy, we have shown that COMP-Ang-1 improves hyperglycemia and neuroregeneration in ob/ob mice. However, the mechanism of the antidiabetic effect of COMP-Ang-1 is completely unknown. Therefore, we elucidated the diabetes protective molecular mechanisms of COMP-Ang-1 in diabetic db/db mouse model. COMP-Ang-1 (0.5 ng/g body weight) or aqueous NaCl solution was injected intraperitoneally per day in 21 consecutive days into 3-month old, male db/db mice (n=10 per group). Blood glucose and HbA1c levels were determined at baseline and 21 days after COMP-Ang-1 or NaCl treatment. The effect of COMP-Ang-1 on glucose uptake was investigated by euglycemic-hyperinsulinemic clamp studies and key genes of glucose metabolism were studied by Western blot analysis. Our findings indicate that COMP-Ang-1 improves glucose metabolism in a tissue specific manner by regulating HIF-1α transcriptional genes of GLUT-1 expression.


Assuntos
Angiopoietina-1/administração & dosagem , Biomarcadores/análise , Glicemia/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/administração & dosagem , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Transportador de Glucose Tipo 1/metabolismo , Hemoglobinas Glicadas/análise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Especificidade de Órgãos
7.
Eur J Endocrinol ; 181(2): 151-159, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31153139

RESUMO

OBJECTIVE: Neuregulin 4 (NRG4) has recently been introduced as a novel brown adipose tissue (BAT)-secreted adipokine with beneficial metabolic effects in mice. However, regulation of Nrg4 in end-stage kidney disease (ESKD) and type 2 diabetes mellitus (T2DM) has not been elucidated, so far. DESIGN/METHODS: Serum NRG4 levels were quantified by ELISA in 60 subjects with ESKD on chronic hemodialysis as compared to 60 subjects with an estimated glomerular filtration rate >50 mL/min/1.73 m2 in a cross-sectional cohort. Within both groups, about half of the patients had a T2DM. Furthermore, mRNA expression of Nrg4 was determined in two mouse models of diabetic kidney disease (DKD) as compared to two different groups of non-diabetic control mice. Moreover, mRNA expression of Nrg4 was investigated in cultured, differentiated mouse brown and white adipocytes, as well as hepatocytes, after treatment with the uremic toxin indoxyl sulfate. RESULTS: Median serum NRG4 was significantly lower in patients with ESKD compared to controls and the adipokine was independently associated with a beneficial renal, glucose and lipid profile. In mice with DKD, Nrg4 mRNA expression was decreased in all adipose tissue depots compared to control mice. The uremic toxin indoxyl sulfate did not significantly alter Nrg4 mRNA expression in adipocytes and hepatocytes, in vitro. CONCLUSIONS: Circulating NRG4 is independently associated with a preserved renal function and mRNA expression of -Nrg4 is reduced in adipose tissue depots of mice with DKD. The BAT-secreted adipokine is further associated with a beneficial glucose and lipid profile supporting NRG4 as potential treatment target in metabolic and renal disease states.


Assuntos
Tecido Adiposo Marrom/metabolismo , Neurregulinas/sangue , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos Transversais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neurregulinas/metabolismo
8.
Neuroscience ; 406: 496-509, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30867132

RESUMO

Peripheral diabetic neuropathy (PDN) is one of the most common complications of diabetes mellitus. Previous studies showed an association between dietary iron load and inflammation in the development of PDN in a rat model of type 1 diabetes (T1D). Here we investigated the role of iron and neural inflammation in development of PDN in a animal model of obesity and type 2 diabetes (T2D). 3-month-old db/db mice were fed with a high, standard or low iron diet for 4 months. High iron chow lead to a significant increase in motor nerve conduction velocities compared to mice on standard and low iron chow. Direct beneficiary effects on lowering blood glucose and HbA1c concentrations were shown in the high iron treated diabetic mice. Numbers of pro-inflammatory M1 macrophages were reduced in nerve sections, and anti-inflammatory M2 macrophages were increased in db/db mice on high iron diet compared to other groups. These results confirm and extend our previous findings in STZ-diabetic rats by showing that dietary non-hem iron supplementation may partly prevent the development of PDN in opposition to iron restriction. The identification of these dietary iron effects on the metabolic and inflammatory mechanisms of PDN supports a role of dietary iron and leads us to suggest testing for iron levels in human diabetic patients.


Assuntos
Neuropatias Diabéticas/fisiopatologia , Inflamação/metabolismo , Ferro/metabolismo , Fibras Nervosas/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Inflamação/fisiopatologia , Ferro da Dieta/metabolismo , Masculino , Camundongos Transgênicos , Obesidade/fisiopatologia , Nervo Isquiático/metabolismo
9.
Neurol Res ; 41(4): 341-353, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30638160

RESUMO

INTRODUCTION: Here, we investigated inflammatory signs of peripheral nerves in leptin-deficient obese ob/ob mice and the modulating effects of the exogenous iron load. METHODS: Ob/ob and ob/+ control mice were fed with high, standard, or low iron diet for four months. RESULTS: We found intraepidermal nerve fiber degeneration in foot skin and low-grade neuropathic abnormalities including mildly slowed motor and compound sensory nerve conduction velocities and low-grade macrophage and T-cell infiltration without overt neuropathology in sciatic nerves of all ob/ob mice. Low dietary iron load caused more pronounced abnormalities than high iron load in ob/ob mice. DISCUSSION: Our data suggest that dietary non-heme iron deficiency may be a modulating factor in the pathogenesis of peripheral neuropathy in obese ob/ob mice with metabolic syndrome. Once the mechanisms can be further elucidated, how low dietary iron augments peripheral nerve degeneration and dysfunction via pro-inflammatory pathways and new therapeutic strategies could be developed. ABBREVIATIONS: CMAP: compound muscle action potential; cSNCV: compound sensory nerve conduction velocity; IENFD: intraepidermal nerve fiber density; LDL: low-density lipoprotein; MetS: metabolic syndrome; MNCV: motor conduction velocity; NCV: nerve conduction velocity; PN: peripheral neuropathy; PNS: peripheral nervous system; STZ: streptozotocin; T2D: type 2 diabetes mellitus; TNF alpha: tumor necrosis factor alpha; WHO: World Health Organization.


Assuntos
Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/dietoterapia , Ferro da Dieta/uso terapêutico , Leptina/deficiência , Inflamação Neurogênica/etiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Leptina/genética , Masculino , Camundongos , Camundongos Mutantes , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica de Transmissão , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/genética , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Pele/inervação , Pele/patologia
10.
Metabolism ; 65(4): 391-405, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26975531

RESUMO

BACKGROUND: Iron is an essential but potentially toxic metal in mammals. Here we investigated a pathogenic role of exogenous iron in peripheral diabetic neuropathy (PDN) in an animal model for type 1 diabetes. METHODS: Diabetes was induced by a single injection of streptozotocin (STZ) in 4-month-old Sprague-Dawley rats. STZ-diabetic rats and non-diabetic rats were fed with high, standard, or low iron diet. After three months of feeding, animals were tested. RESULTS: STZ-rats on standard iron diet showed overt diabetes, slowed motor nerve conduction, marked degeneration of distal intraepidermal nerve fibers, mild intraneural infiltration with macrophages and T-cells in the sciatic nerve, and increased iron levels in serum and dorsal root ganglion (DRG) neurons. While motor fibers were afflicted in all STZ-groups, only a low iron-diet led also to reduced sensory conduction velocities in the sciatic nerve. In addition, only STZ-rats on a low iron diet showed damaged mitochondria in numerous DRG neurons, a more profound intraepidermal nerve fiber degeneration indicating small fiber neuropathy, and even more inflammatory cells in sciatic nerves than seen in any other experimental group. CONCLUSIONS: These results indicate that dietary iron-deficiency rather than iron overload, and mild inflammation may both promote neuropathy in STZ-induced experimental PDN.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/patologia , Ferro da Dieta/toxicidade , Neurite (Inflamação)/induzido quimicamente , Neurite (Inflamação)/patologia , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Dieta , Gânglios Espinais/patologia , Ferro/sangue , Masculino , Fibras Nervosas/patologia , Condução Nervosa/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA