Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514187

RESUMO

RNA polymerase II transcription elongation directs an intricate pattern of histone modifications. This pattern includes a regulatory cascade initiated by the elongation factor Rtf1, leading to monoubiquitylation of histone H2B, and subsequent methylation of histone H3 on lysine 4. Previous studies have defined the molecular basis for these regulatory relationships, but it remains unclear how they regulate gene expression. To address this question, we investigated a drug resistance phenotype that characterizes defects in this axis in the model eukaryote Schizosaccharomyces pombe (fission yeast). The mutations caused resistance to the ribonucleotide reductase inhibitor hydroxyurea (HU) that correlated with a reduced effect of HU on dNTP pools, reduced requirement for the S-phase checkpoint, and blunting of the transcriptional response to HU treatment. Mutations in the C-terminal repeat domain of the RNA polymerase II large subunit Rpb1 led to similar phenotypes. Moreover, all the HU-resistant mutants also exhibited resistance to several azole-class antifungal agents. Our results suggest a novel, shared gene regulatory function of the Rtf1-H2Bub1-H3K4me axis and the Rpb1 C-terminal repeat domain in controlling fungal drug tolerance.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Código das Histonas , Histonas/genética , Histonas/metabolismo , Resistência a Múltiplos Medicamentos
2.
PLoS Genet ; 19(11): e1010492, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939109

RESUMO

Heterochromatin is a condensed chromatin structure that represses transcription of repetitive DNA elements and developmental genes, and is required for genome stability. Paradoxically, transcription of heterochromatic sequences is required for establishment of heterochromatin in diverse eukaryotic species. As such, components of the transcriptional machinery can play important roles in establishing heterochromatin. How these factors coordinate with heterochromatin proteins at nascent heterochromatic transcripts remains poorly understood. In the model eukaryote Schizosaccharomyces pombe (S. pombe), heterochromatin nucleation can be coupled to processing of nascent transcripts by the RNA interference (RNAi) pathway, or to other post-transcriptional mechanisms that are RNAi-independent. Here we show that the RNA polymerase II processivity factor Spt5 negatively regulates heterochromatin in S. pombe through its C-terminal domain (CTD). The Spt5 CTD is analogous to the CTD of the RNA polymerase II large subunit, and is comprised of multiple repeats of an amino acid motif that is phosphorylated by Cdk9. We provide evidence that genetic ablation of Spt5 CTD phosphorylation results in aberrant RNAi-dependent nucleation of heterochromatin at an ectopic location, as well as inappropriate spread of heterochromatin proximal to centromeres. In contrast, truncation of Spt5 CTD repeat number enhanced RNAi-independent heterochromatin formation and bypassed the requirement for RNAi. We relate these phenotypes to the known Spt5 CTD-binding factor Prf1/Rtf1. This separation of function argues that Spt5 CTD phosphorylation and CTD length restrict heterochromatin through unique mechanisms. More broadly, our findings argue that length and phosphorylation of the Spt5 CTD repeat array have distinct regulatory effects on transcription.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Fosforilação , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Sequências Repetidas Terminais , Interferência de RNA
3.
Nucleic Acids Res ; 48(13): 7154-7168, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32496538

RESUMO

Mono-ubiquitylation of histone H2B (H2Bub1) and phosphorylation of elongation factor Spt5 by cyclin-dependent kinase 9 (Cdk9) occur during transcription by RNA polymerase II (RNAPII), and are mutually dependent in fission yeast. It remained unclear whether Cdk9 and H2Bub1 cooperate to regulate the expression of individual genes. Here, we show that Cdk9 inhibition or H2Bub1 loss induces intragenic antisense transcription of ∼10% of fission yeast genes, with each perturbation affecting largely distinct subsets; ablation of both pathways de-represses antisense transcription of over half the genome. H2Bub1 and phospho-Spt5 have similar genome-wide distributions; both modifications are enriched, and directly proportional to each other, in coding regions, and decrease abruptly around the cleavage and polyadenylation signal (CPS). Cdk9-dependence of antisense suppression at specific genes correlates with high H2Bub1 occupancy, and with promoter-proximal RNAPII pausing. Genetic interactions link Cdk9, H2Bub1 and the histone deacetylase Clr6-CII, while combined Cdk9 inhibition and H2Bub1 loss impair Clr6-CII recruitment to chromatin and lead to decreased occupancy and increased acetylation of histones within gene coding regions. These results uncover novel interactions between co-transcriptional histone modification pathways, which link regulation of RNAPII transcription elongation to suppression of aberrant initiation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Histonas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Elongação da Transcrição Genética , Fosforilação , Fatores de Elongação da Transcrição/metabolismo , Ubiquitinação
4.
Mol Cell Biol ; 40(15)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32366382

RESUMO

Rtf1 is a conserved RNA polymerase II (RNAPII) elongation factor that promotes cotranscriptional histone modification, RNAPII transcript elongation, and mRNA processing. Rtf1 function requires the phosphorylation of Spt5, an essential RNAPII processivity factor. Spt5 is phosphorylated within its C-terminal domain (CTD) by cyclin-dependent kinase 9 (Cdk9), the catalytic component of positive transcription elongation factor b (P-TEFb). Rtf1 recognizes phosphorylated Spt5 (pSpt5) through its Plus3 domain. Since Spt5 is a unique target of Cdk9 and Rtf1 is the only known pSpt5-binding factor, the Plus3/pSpt5 interaction is thought to be a key Cdk9-dependent event regulating RNAPII elongation. Here, we dissect Rtf1 regulation by pSpt5 in the fission yeast Schizosaccharomyces pombe We demonstrate that the Plus3 domain of Rtf1 (Prf1 in S. pombe) and pSpt5 are functionally distinct and that they act in parallel to promote Prf1 function. This alternate Plus3 domain function involves an interface that overlaps the pSpt5-binding site and that can interact with single-stranded nucleic acid or with the polymerase-associated factor (PAF) complex in vitro We further show that the C-terminal region of Prf1, which also interacts with PAF, has a similar parallel function with pSpt5. Our results elucidate unexpected complexity underlying Cdk9-dependent pathways that regulate transcription elongation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Elongação da Transcrição/genética , Fosforilação , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/metabolismo
5.
Mol Cell Biol ; 40(14)2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32341082

RESUMO

Pathological cardiac hypertrophy is driven by neurohormonal activation of specific G protein-coupled receptors (GPCRs) in cardiomyocytes and is accompanied by large-scale changes in cardiomyocyte gene expression. These transcriptional changes require activity of positive transcription elongation factor b (P-TEFb), which is recruited to target genes by the bromodomain protein Brd4 or the super elongation complex (SEC). Here, we describe GPCR-specific regulation of these P-TEFb complexes and a novel mechanism for activating Brd4 in primary neonatal rat cardiomyocytes. The SEC was required for the hypertrophic response downstream of either the α1-adrenergic receptor (α1-AR) or the endothelin receptor (ETR). In contrast, Brd4 inhibition selectively impaired the α1-AR response. This was corroborated by the finding that the activation of α1-AR, but not ETR, increased Brd4 occupancy at promoters and superenhancers of hypertrophic genes. Transcriptome analysis demonstrated that the activation of both receptors initiated similar gene expression programs, but that Brd4 inhibition attenuated hypertrophic genes more robustly following α1-AR activation. Finally, we show that protein kinase A (PKA) is required for α1-AR stimulation of Brd4 chromatin occupancy. The differential role of the Brd4/P-TEFb complex in response to distinct GPCR pathways has potential clinical implications, as therapies targeting this complex are currently being explored for heart failure.


Assuntos
Cardiomegalia/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Miócitos Cardíacos/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cardiomegalia/patologia , Células Cultivadas , Miócitos Cardíacos/patologia , Proteínas Nucleares/metabolismo , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Endotelina/metabolismo , Fatores de Transcrição/metabolismo
6.
Genetics ; 213(1): 161-172, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31345994

RESUMO

Histone H2B monoubiquitylation (H2Bub1) is tightly linked to RNA polymerase II transcription elongation, and is also directly implicated in DNA replication and repair. Loss of H2Bub1 is associated with defects in cell cycle progression, but how these are related to its various functions, and the underlying mechanisms involved, is not understood. Here we describe a role for H2Bub1 in the regulation of replication-dependent histone genes in the fission yeast Schizosaccharomyces pombe H2Bub1 activates histone genes indirectly by suppressing antisense transcription of ams2+ -a gene encoding a GATA-type transcription factor that activates histone genes and is required for assembly of centromeric chromatin. Mutants lacking the ubiquitylation site in H2B or the H2B-specific E3 ubiquitin ligase Brl2 had elevated levels of ams2+ antisense transcripts and reduced Ams2 protein levels. These defects were reversed upon inhibition of Cdk9-an ortholog of the kinase component of positive transcription elongation factor b (P-TEFb)-indicating that they likely resulted from aberrant transcription elongation. Reduced Cdk9 activity also partially rescued chromosome segregation phenotypes of H2Bub1 mutants. In a genome-wide analysis, loss of H2Bub1 led to increased antisense transcripts at over 500 protein-coding genes in H2Bub1 mutants; for a subset of these, including several genes involved in chromosome segregation and chromatin assembly, antisense derepression was Cdk9-dependent. Our results highlight antisense suppression as a key feature of cell cycle-dependent gene regulation by H2Bub1, and suggest that aberrant transcription elongation may underlie the effects of H2Bub1 loss on cell cycle progression.


Assuntos
Fatores de Transcrição GATA/genética , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , RNA Antissenso/genética , Proteínas de Schizosaccharomyces pombe/genética , Ubiquitinação , Segregação de Cromossomos , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Fatores de Transcrição GATA/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Nucleic Acids Res ; 43(20): 9766-75, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26275777

RESUMO

Transcription by RNA polymerase II (RNAPII) is accompanied by a conserved pattern of histone modifications that plays important roles in regulating gene expression. The establishment of this pattern requires phosphorylation of both Rpb1 (the largest RNAPII subunit) and the elongation factor Spt5 on their respective C-terminal domains (CTDs). Here we interrogated the roles of individual Rpb1 and Spt5 CTD phospho-sites in directing co-transcriptional histone modifications in the fission yeast Schizosaccharomyces pombe. Steady-state levels of methylation at histone H3 lysines 4 (H3K4me) and 36 (H3K36me) were sensitive to multiple mutations of the Rpb1 CTD repeat motif (Y1S2P3T4S5P6S7). Ablation of the Spt5 CTD phospho-site Thr1 reduced H3K4me levels but had minimal effects on H3K36me. Nonetheless, Spt5 CTD mutations potentiated the effects of Rpb1 CTD mutations on H3K36me, suggesting overlapping functions. Phosphorylation of Rpb1 Ser2 by the Cdk12 orthologue Lsk1 positively regulated H3K36me but negatively regulated H3K4me. H3K36me and histone H2B monoubiquitylation required Rpb1 Ser5 but were maintained upon inactivation of Mcs6/Cdk7, the major kinase for Rpb1 Ser5 in vivo, implicating another Ser5 kinase in these regulatory pathways. Our results elaborate the CTD 'code' for co-transcriptional histone modifications.


Assuntos
Histonas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Metilação , Mutação , Fosforilação , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase II/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Serina/metabolismo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Quinase Ativadora de Quinase Dependente de Ciclina
8.
PLoS Genet ; 9(12): e1004029, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385927

RESUMO

Cyclin-dependent kinase 9 (Cdk9) promotes elongation by RNA polymerase II (RNAPII), mRNA processing, and co-transcriptional histone modification. Cdk9 phosphorylates multiple targets, including the conserved RNAPII elongation factor Spt5 and RNAPII itself, but how these different modifications mediate Cdk9 functions is not known. Here we describe two Cdk9-dependent pathways in the fission yeast Schizosaccharomyces pombe that involve distinct targets and elicit distinct biological outcomes. Phosphorylation of Spt5 by Cdk9 creates a direct binding site for Prf1/Rtf1, a transcription regulator with functional and physical links to the Polymerase Associated Factor (PAF) complex. PAF association with chromatin is also dependent on Cdk9 but involves alternate phosphoacceptor targets. Prf1 and PAF are biochemically separate in cell extracts, and genetic analyses show that Prf1 and PAF are functionally distinct and exert opposing effects on the RNAPII elongation complex. We propose that this opposition constitutes a Cdk9 auto-regulatory mechanism, such that a positive effect on elongation, driven by the PAF pathway, is kept in check by a negative effect of Prf1/Rtf1 and downstream mono-ubiquitylation of histone H2B. Thus, optimal RNAPII elongation may require balanced action of functionally distinct Cdk9 pathways.


Assuntos
Quinase 9 Dependente de Ciclina/genética , RNA Mensageiro/genética , Proteínas de Schizosaccharomyces pombe/genética , Transcrição Gênica , Sítios de Ligação/genética , Cromatina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Histonas/genética , Fosforilação , RNA Mensageiro/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
9.
PLoS Genet ; 8(8): e1002822, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22876190

RESUMO

Transcript elongation by RNA polymerase II (RNAPII) is accompanied by conserved patterns of histone modification. Whereas histone modifications have established roles in transcription initiation, their functions during elongation are not understood. Mono-ubiquitylation of histone H2B (H2Bub1) plays a key role in coordinating co-transcriptional histone modification by promoting site-specific methylation of histone H3. H2Bub1 also regulates gene expression through an unidentified, methylation-independent mechanism. Here we reveal bidirectional communication between H2Bub1 and Cdk9, the ortholog of metazoan positive transcription elongation factor b (P-TEFb), in the fission yeast Schizosaccharomyces pombe. Chemical and classical genetic analyses indicate that lowering Cdk9 activity or preventing phosphorylation of its substrate, the transcription processivity factor Spt5, reduces H2Bub1 in vivo. Conversely, mutations in the H2Bub1 pathway impair Cdk9 recruitment to chromatin and decrease Spt5 phosphorylation. Moreover, an Spt5 phosphorylation-site mutation, combined with deletion of the histone H3 Lys4 methyltransferase Set1, phenocopies morphologic and growth defects due to H2Bub1 loss, suggesting independent, partially redundant roles for Cdk9 and Set1 downstream of H2Bub1. Surprisingly, mutation of the histone H2B ubiquitin-acceptor residue relaxes the Cdk9 activity requirement in vivo, and cdk9 mutations suppress cell-morphology defects in H2Bub1-deficient strains. Genome-wide analyses by chromatin immunoprecipitation also demonstrate opposing effects of Cdk9 and H2Bub1 on distribution of transcribing RNAPII. Therefore, whereas mutual dependence of H2Bub1 and Spt5 phosphorylation indicates positive feedback, mutual suppression by cdk9 and H2Bub1-pathway mutations suggests antagonistic functions that must be kept in balance to regulate elongation. Loss of H2Bub1 disrupts that balance and leads to deranged gene expression and aberrant cell morphologies, revealing a novel function of a conserved, co-transcriptional histone modification.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Histonas/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Mensageiro/metabolismo , Schizosaccharomyces/metabolismo , Elongação da Transcrição Genética , Cromatina/genética , Cromatina/metabolismo , Quinase 9 Dependente de Ciclina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Regulação Fúngica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Histonas/genética , Mutação , Fosforilação , Fator B de Elongação Transcricional Positiva/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Ubiquitinação
10.
J Biol Chem ; 287(23): 19040-7, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22505722

RESUMO

The methylation of histone H3 at lysine 4 (H3K4me) is critical for the formation of transcriptionally active chromatin in eukaryotes. In yeast, Drosophila, and some human cell lines, H3K4me is globally stimulated by the monoubiquitylation of histone H2B (H2Bub1), another histone modification associated with transcription. The mechanism of this "trans-histone" modification pathway remains uncertain, and studies carried out in different experimental systems have suggested that H2Bub1 could either influence the subunit composition of methyltransferase complexes or directly stimulate methyltransferase activity. We have reconstituted this pathway in vitro using the native H3K4-specific methyltransferase complex Set1C purified from the fission yeast Schizosaccharomyces pombe and chromatin substrates that contain semisynthetic H2Bub1. We found that the activity of S. pombe Set1C toward nucleosomal histone H3 is directly enhanced by H2Bub1 in vitro. Importantly, Set1C purified from cells lacking H2Bub1 retained activity on free histone substrates, suggesting that Set1C remains intact in the absence of H2Bub1. Chromatin immunoprecipitation assays revealed a defect in recruitment of intact Set1C to transcribed chromatin in H2Bub1-deficient mutants. Our data argue that trans-histone crosstalk in S. pombe involves direct enhancement of Set1C methyltransferase activity by H2Bub1 and suggest that this represents a conserved aspect of H2Bub1-H3K4me crosstalk in eukaryotes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação/fisiologia , Animais , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila melanogaster , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Complexos Multienzimáticos/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/genética , Xenopus laevis
11.
Growth Horm IGF Res ; 18(6): 487-96, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18502161

RESUMO

OBJECTIVE: Insulin-like growth factor-binding protein 3 (IGFBP-3) can induce antiproliferative and proapoptotic effects in human cancer cells, by IGF-I independent mechanisms. The antitumor efficacy of recombinant human IGFBP-3 (rhIGFBP-3) and its interaction with chemotherapy in lung and colon cancers, in vitro and in vivo was evaluated. The effects of the different treatments on IGF-IR signaling pathways were also examined. DESIGN: Antiproliferative in vitro assay using rhIGFBP-3, as single agent or in combination with carboplatin or irinotecan against the murine Lewis Lung (M-3LL) and LoVo cell lines, respectively was performed. In the M-3LL model in vivo model, mice were treated with rhIGFBP-3 (3 or 10 mg/kg), carboplatin (25 or 50 mg/kg) alone or in combined treatments. In the LoVo xenograft model, mice were treated with rhIGFBP-3 (3, 10 or 30 mg/kg), irinotecan (10 or 20 mg/kg), as monotherapies or in combinations. RESULTS: rhIGFBP-3 elicited a dose-dependent tumor growth inhibition on the M-3LL model and produced a significant tumor growth inhibition at the highest dose tested. However, it failed to improve the antitumor response to carboplatin. In the LoVo colorectal xenograft model, rhIGFBP-3 caused significant single-agent inhibitory effect and enhanced the antitumor activity of irinotecan at their lowest doses tested. Western blot analysis suggests that the observed tumor growth inhibition by rhIGFBP-3 correlates with decreased Akt phosphorylation in both M-3LL and LoVo cell lines in vitro. CONCLUSIONS: Our novel findings provide evidence for in vivo activity of rhIGFBP-3 against lung and colon tumor models and reveal new insight into its interaction with chemotherapeutic drugs. The antitumor effects of rhIGFBP-3 are associated with a downregulation of AKT signaling.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Carboplatina/administração & dosagem , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Sinergismo Farmacológico , Feminino , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/administração & dosagem , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/fisiologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/uso terapêutico , Irinotecano , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Transdução de Sinais , Transplante Heterólogo
12.
Cancer Res ; 66(14): 7245-52, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16849573

RESUMO

Clinical studies indicate that Herceptin (trastuzumab), a recombinant humanized monoclonal antibody directed against the human epidermal growth factor receptor-2 (HER-2) tyrosine kinase growth factor receptor, provides a significant but transient survival advantage to a subset of patients with HER-2-overexpressing metastatic breast cancer when given as a first-line agent. Increased insulin-like growth factor (IGF)-I receptor (IGF-IR) signaling has recently been identified as a potential factor adversely influencing the response to Herceptin. We examined the effect of recombinant human IGF binding protein 3 (rhIGFBP-3), an antagonist of IGF-IR signaling, in Herceptin-resistant breast cells in vitro and in tumors in vivo. Consistent with results obtained using HER-2- or IGF-IR-transfected cells (MCF-7/HER2-18 and SKBR3/IGF-IR, respectively), we found that rhIGFBP-3 significantly reduced IGF-I-induced IGF-IR phosphorylation and displayed a synergistic interaction with Herceptin against cultured HER-2-overexpressing breast cancer cells in vitro. We show, for the first time, the antitumor activity of rhIGFBP-3 against advanced-stage MCF-7/HER2-18-transfected human breast cancer xenografts and its potentiation of Herceptin activity. We also provide evidence that IGF-IR activation counters the early suppressive effect of Herceptin on HER-2 signaling via Akt and p44/p42 mitogen-activated protein kinase (MAPK), and that inhibition of HER-2-overexpressing human breast tumor growth by rhIGFBP-3 is associated with restored down-regulation of Akt and p44/p42 MAPK phosphorylation in vitro and in vivo. These results emphasize the merit of evaluating simultaneous blockade of the HER-2 and IGF-IR pathways using combination therapy with rhIGFBP-3 plus Herceptin in human clinical trials of patients with HER-2-positive breast cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Receptores ErbB/biossíntese , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Anticorpos Monoclonais Humanizados , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/biossíntese , Receptor ErbB-2/metabolismo , Receptor IGF Tipo 1/biossíntese , Receptor IGF Tipo 1/metabolismo , Proteínas Recombinantes/farmacologia , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biochem Biophys Res Commun ; 328(4): 874-84, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15707960

RESUMO

BAG-1 is a multi-functional protein that exists in three major isoforms, BAG-1 p50, p46, and p36. A fourth isoform of 29 kDa also exists but its function remains mostly unknown. To further understand the role of this smaller isoform in ovarian cancer cells, the SKOV3 cell line was transfected with a doxycycline-inducible human BAG-1 p29 isoform or control plasmid. Ovexpression of BAG-1 p29 promotes protection from apoptosis in the presence of EGF as shown by decreased cell death measured by XTT assay and caspase-3 activity. Unexpectedly, however, BAG-1 p29 does not associate with the EGF receptor. When BAG-1 p29 transfectants were incubated in hydrogel-coated plates, BAG-1 p29-expressing SKOV3 cells were significantly more resistant to anoikis as compared to controls, and this correlated with decreased activation of caspase-3. The results of this study implicate BAG-1 p29 in the regulation of both the EGF signaling cascade and the apoptotic cascade induced by loss of anchorage.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Neoplasias Ovarianas/metabolismo , Anoikis/efeitos dos fármacos , Antineoplásicos/farmacologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA , Relação Dose-Resposta a Droga , Doxiciclina/farmacologia , Interações Medicamentosas , Resistência a Medicamentos , Feminino , Células HeLa , Humanos , Neoplasias Ovarianas/patologia , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA