Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Drug Dev ; 13(6): 611-620, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38389387

RESUMO

Omalizumab is an anti-IgE monoclonal antibody currently approved for the treatment of asthma, nasal polyps/chronic rhinosinusitis with nasal polyps, and chronic spontaneous urticaria. Omalizumab is available as an injection in a prefilled syringe (PFS) with a needle safety device (NSD). New product configurations were developed to reduce the number of injections per dose administration, improve patient convenience and treatment compliance. The objective of this randomized open-label 12-week study was to demonstrate pharmacokinetic bioequivalence between (1) new PFS with autoinjector (PFS-AI), (2) new PFS-NSD configuration, and (3) current PFS-NSD configuration. Each new configuration was considered bioequivalent to the current configuration if the confidence intervals (CIs) for the geometric mean ratios (GMR) were contained in the 0.80-1.25 range for maximum concentration (Cmax), area under the concentration-time curve until the last quantifiable measurement (AUClast), and AUC extrapolated to infinity (AUCinf). Safety was assessed throughout the study. In total, 193 healthy volunteers were randomized at 1:1:1 ratio to omalizumab 1×300 mg/2 mL via new PFS-AI (n = 66), omalizumab 1×300 mg/2 mL via new PFS-NSD (n = 64), or omalizumab 2×150 mg/1 mL via current PFS-NSD (n = 63). Comparing new PFS-AI versus current PFS-NSD, the GMRs were: Cmax, 1.085; AUClast, 1.093; AUCinf, 1.100. Comparing new PFS-NSD versus current PFS-NSD, the GMRs were: Cmax, 1.006; AUClast, 1.016; AUCinf, 1.027. The 95% CIs for all GMR parameters were contained within the 0.80-1.25 range. Safety findings were consistent with the known safety profile of omalizumab. Single-dose omalizumab administered as the new PFS-AI or new PFS-NSD was bioequivalent to the current PFS-NSD.


Assuntos
Área Sob a Curva , Voluntários Saudáveis , Omalizumab , Seringas , Equivalência Terapêutica , Humanos , Omalizumab/administração & dosagem , Omalizumab/farmacocinética , Omalizumab/efeitos adversos , Adulto , Masculino , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Agulhas , Injeções Subcutâneas
2.
Microb Cell Fact ; 13: 147, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25359316

RESUMO

BACKGROUND: The great interest in the production of highly pure lactic acid enantiomers comes from the application of polylactic acid (PLA) for the production of biodegradable plastics. Yeasts can be considered as alternative cell factories to lactic acid bacteria for lactic acid production, despite not being natural producers, since they can better tolerate acidic environments. We have previously described metabolically engineered Saccharomyces cerevisiae strains producing high amounts of L-lactic acid (>60 g/L) at low pH. The high product concentration represents the major limiting step of the process, mainly because of its toxic effects. Therefore, our goal was the identification of novel targets for strain improvement possibly involved in the yeast response to lactic acid stress. RESULTS: The enzyme S-adenosylmethionine (SAM) synthetase catalyses the only known reaction leading to the biosynthesis of SAM, an important cellular cofactor. SAM is involved in phospholipid biosynthesis and hence in membrane remodelling during acid stress. Since only the enzyme isoform 2 seems to be responsive to membrane related signals (e.g. myo-inositol), Sam2p was tagged with GFP to analyse its abundance and cellular localization under different stress conditions. Western blot analyses showed that lactic acid exposure correlates with an increase in protein levels. The SAM2 gene was then overexpressed and deleted in laboratory strains. Remarkably, in the BY4741 strain its deletion conferred higher resistance to lactic acid, while its overexpression was detrimental. Therefore, SAM2 was deleted in a strain previously engineered and evolved for industrial lactic acid production and tolerance, resulting in higher production. CONCLUSIONS: Here we demonstrated that the modulation of SAM2 can have different outcomes, from clear effects to no significant phenotypic responses, upon lactic acid stress in different genetic backgrounds, and that at least in one genetic background SAM2 deletion led to an industrially relevant increase in lactic acid production. Further work is needed to elucidate the molecular basis of these observations, which underline once more that strain robustness relies on complex cellular mechanisms, involving regulatory genes and proteins. Our data confirm cofactor engineering as an important tool for cell factory improvement.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Ácido Láctico/biossíntese , Metionina Adenosiltransferase , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Isoenzimas/biossíntese , Isoenzimas/genética , Metionina Adenosiltransferase/biossíntese , Metionina Adenosiltransferase/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
3.
Cancer Res ; 63(17): 5224-9, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-14500349

RESUMO

This study investigated the functional interplay between vascular endothelial growth factor (VEGF) and metalloproteinases (MMPs) in ovarian carcinomas. Levels of MMP9 (pro and activated form) and proMMP2 in ascites correlated with VEGF and with the ascitic volume in nude mice bearing human ovarian carcinoma xenografts (HOC22 and HOC8). The MMP inhibitor batimastat (BB-94) reduced VEGF release and ascitic fluid formation. Exogenous, activated MMP9, and, to a lesser extent, MMP2, increased VEGF release by SKOV3 and OVCAR3 ovarian carcinoma cells. The effect was dose and time dependent and inhibited by BB-94. MMP9-released VEGF was biologically active, because it induced endothelial cell motility, and its activity was prevented by the VEGF inhibitor SU5416. Our results indicate that MMPs, mainly MMP9, play a role in the release of biologically active VEGF and consequently in the formation of ascites.


Assuntos
Fatores de Crescimento Endotelial/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Linfocinas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/metabolismo , Fenilalanina/análogos & derivados , Animais , Ascite/enzimologia , Ascite/patologia , Movimento Celular/fisiologia , Meios de Cultivo Condicionados , Fatores de Crescimento Endotelial/antagonistas & inibidores , Ativação Enzimática , Feminino , Humanos , Linfocinas/antagonistas & inibidores , Metaloproteinase 9 da Matriz/farmacologia , Camundongos , Camundongos Nus , Neoplasias Ovarianas/patologia , Cavidade Peritoneal/patologia , Fenilalanina/farmacologia , Tiofenos/farmacologia , Transplante Heterólogo , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA