Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(40): E5783-E5791, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698129

RESUMO

Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen (N2) to two ammonia (NH3) molecules through the participation of its two protein components, the MoFe and Fe proteins. Electron transfer (ET) from the Fe protein to the catalytic MoFe protein involves a series of synchronized events requiring the transient association of one Fe protein with each αß half of the α2ß2 MoFe protein. This process is referred to as the Fe protein cycle and includes binding of two ATP to an Fe protein, association of an Fe protein with the MoFe protein, ET from the Fe protein to the MoFe protein, hydrolysis of the two ATP to two ADP and two Pi for each ET, Pi release, and dissociation of oxidized Fe protein-(ADP)2 from the MoFe protein. Because the MoFe protein tetramer has two separate αß active units, it participates in two distinct Fe protein cycles. Quantitative kinetic measurements of ET, ATP hydrolysis, and Pi release during the presteady-state phase of electron delivery demonstrate that the two halves of the ternary complex between the MoFe protein and two reduced Fe protein-(ATP)2 do not undergo the Fe protein cycle independently. Instead, the data are globally fit with a two-branch negative-cooperativity kinetic model in which ET in one-half of the complex partially suppresses this process in the other. A possible mechanism for communication between the two halves of the nitrogenase complex is suggested by normal-mode calculations showing correlated and anticorrelated motions between the two halves.


Assuntos
Trifosfato de Adenosina/química , Molibdoferredoxina/química , Complexos Multiproteicos/química , Oxirredutases/química , Trifosfato de Adenosina/metabolismo , Animais , Transporte de Elétrons , Hidrólise , Cinética , Molibdoferredoxina/metabolismo , Complexos Multiproteicos/metabolismo , Fixação de Nitrogênio , Oxirredutases/metabolismo , Ligação Proteica , Salmão/metabolismo
2.
Biochemistry ; 54(5): 1188-97, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25629200

RESUMO

Extensive studies of the physiological protein-protein electron-transfer (ET) complex between yeast cytochrome c peroxidase (CcP) and cytochrome c (Cc) have left unresolved questions about how formation and dissociation of binary and ternary complexes influence ET. We probe this issue through a study of the photocycle of ET between Zn-protoporphyrin IX-substituted CcP(W191F) (ZnPCcP) and Cc. Photoexcitation of ZnPCcP in complex with Fe(3+)Cc initiates the photocycle: charge-separation ET, [(3)ZnPCcP, Fe(3+)Cc] → [ZnP(+)CcP, Fe(2+)Cc], followed by charge recombination, [ZnP(+)CcP, Fe(2+)Cc] → [ZnPCcP, Fe(3+)Cc]. The W191F mutation eliminates fast hole hopping through W191, enhancing accumulation of the charge-separated intermediate and extending the time scale for binding and dissociation of the charge-separated complex. Both triplet quenching and the charge-separated intermediate were monitored during titrations of ZnPCcP with Fe(3+)Cc, Fe(2+)Cc, and redox-inert CuCc. The results require a photocycle that includes dissociation and/or recombination of the charge-separated binary complex and a charge-separated ternary complex, [ZnP(+)CcP, Fe(2+)Cc, Fe(3+)Cc]. The expanded kinetic scheme formalizes earlier proposals of "substrate-assisted product dissociation" within the photocycle. The measurements yield the thermodynamic affinity constants for binding the first and second Cc: KI = 10(-7) M(-1), and KII = 10(-4) M(-1). However, two-site analysis of the thermodynamics of formation of the ternary complex reveals that Cc binds at the weaker-binding site with much greater affinity than previously recognized and places upper bounds on the contributions of repulsion between the two Cc's of the ternary complex. In conjunction with recent nuclear magnetic resonance studies, the analysis further suggests a dynamic view of the ternary complex, wherein neither Cc necessarily faithfully adopts the crystal-structure configuration because of Cc-Cc repulsion.


Assuntos
Citocromo-c Peroxidase/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexos Multienzimáticos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Substituição de Aminoácidos , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA