Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 479(22): 2365-2377, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36373632

RESUMO

Phytoene synthase (PSY) converts two molecules of geranyl-geranyl diphosphate to phytoene, the key regulatory step in carotenogenesis. However, post-translational mechanisms that control PSY expression are scarcely understood. Carotenoid biosynthesis (mainly bacterioruberin) is a distinctive feature of haloarchaea thriving in hypersaline environments. Carotenogenesis is negatively regulated by the AAA+ LonB protease in the haloarchaeon Haloferax volcanii as it controls PSY degradation. We investigated the relevance of the C-terminal portion of HvPSY as a regulatory element for carotenoid biosynthesis. H. volcanii mutants were constructed to express full-length HvPSY protein (strain HVPSYwt) and truncated HvPSY lacking 10 (HVPSY10), 20 (HVPSY20) or 34 amino acids (HVPSY34) at the C-terminus. Cells of HVPSY20 and HVPSY34 showed hyperpigmentation (bacterioruberin content 3-fold higher than HVPSYwt) which correlated with increased PSY protein abundance (2-fold in HVPSY34) while they contained less psy transcript level compared with HVPSYwt. In vivo degradation assays showed that HvPSY34 was more stable than HvPSYwt. Collectively, these results show that the C-terminal region of HvPSY contains a 'recognition determinant' for proteolysis in H. volcanii. Preliminary evidence suggests that LonB is involved in the recognition mechanism. This study provides the first identification of a regulatory sequence in an archaeal PSY for the post-translational control of carotenogenesis.


Assuntos
Haloferax volcanii , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Glicogênio Sintase , Carotenoides/química
2.
Methods Mol Biol ; 2522: 267-286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125756

RESUMO

The cellular protein repertoire is highly dynamic and responsive to internal or external stimuli. Its changes are largely the consequence of the combination of protein synthesis and degradation, referred collectively as protein turnover. Different proteomics techniques have been developed to determine the whole proteome turnover of a cell, but very few have been applied to archaea. In this chapter we describe a heavy isotope multilabeling method that allowed the successful analysis of relative protein synthesis and degradation rates on the proteome scale of the halophilic archaeon Haloferax volcanii. This method combines 15N and 13C isotope metabolic labeling with high-resolution mass spectrometry and data analysis tools (QuPE web-based platform) and could be applied to different archaea.


Assuntos
Haloferax volcanii , Marcação por Isótopo/métodos , Isótopos/metabolismo , Proteoma/metabolismo , Proteômica/métodos
3.
Methods Mol Biol ; 2522: 301-317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125758

RESUMO

Coimmunoprecipitation is a powerful and commonly used method to identify protein-protein interactions in a physiological context. Here, we report a coimmunoprecipitation protocol that was adapted and optimized for the haloarchaeon Haloferax volcanii to identify interacting partners to the LonB protease. This protocol includes the in vivo cross-linking of H. volcanii proteins using two different crosslinker agents, dithiobis(succinimidyl propionate) and formaldehyde, followed by immunoprecipitation with anti-LonB antibody conjugated to Protein A - Sepharose beads. Tryptic on-bead protein digestion was performed combined with Mass Spectrometry analysis of peptides for the identification and quantification of LonB ligands.


Assuntos
Haloferax volcanii , Formaldeído , Imunoprecipitação , Peptídeo Hidrolases/metabolismo , Peptídeos/análise , Propionatos , Proteínas , Sefarose
4.
Methods Mol Biol ; 2522: 319-330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125759

RESUMO

Extreme halophilic archaea (haloarchaea) have adapted their physiology and biomolecules to thrive in saline environments (>2 M NaCl). Many haloarchaea produce extracellular hydrolases (including proteases) with potential biotechnological applications, which require unusual high salt concentrations to attain their function and maintain their stability. These conditions restrict many of the standard methods used to study these enzymes such as activity determination and/or protein purification. Here, we describe basic protocols to detect and measure extracellular proteolytic activity in haloarchaea including casein hydrolysis on agar plates, quantitative proteolytic activity determination by the azocasein assay and gelatin zymography in presence of the compatible solute glycine-betaine.


Assuntos
Caseínas , Cloreto de Sódio , Ágar , Betaína , Gelatina , Glicina , Peptídeo Hidrolases/metabolismo
5.
Front Microbiol ; 13: 940865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814708

RESUMO

Proteolysis plays a fundamental role in many processes that occur within the cellular membrane including protein quality control, protein export, cell signaling, biogenesis of the cell envelope among others. Archaea are a distinct and physiologically diverse group of prokaryotes found in all kinds of habitats, from the human and plant microbiomes to those with extreme salt concentration, pH and/or temperatures. Thus, these organisms provide an excellent opportunity to extend our current understanding on the biological functions that proteases exert in cell physiology including the adaptation to hostile environments. This revision describes the advances that were made on archaeal membrane proteases with regard to their biological function and potential natural targets focusing on the model haloarchaeon Haloferax volcanii.

6.
Nat Commun ; 11(1): 3145, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561711

RESUMO

While many aspects of archaeal cell biology remain relatively unexplored, systems biology approaches like mass spectrometry (MS) based proteomics offer an opportunity for rapid advances. Unfortunately, the enormous amount of MS data generated often remains incompletely analyzed due to a lack of sophisticated bioinformatic tools and field-specific biological expertise for data interpretation. Here we present the initiation of the Archaeal Proteome Project (ArcPP), a community-based effort to comprehensively analyze archaeal proteomes. Starting with the model archaeon Haloferax volcanii, we reanalyze MS datasets from various strains and culture conditions. Optimized peptide spectrum matching, with strict control of false discovery rates, facilitates identifying > 72% of the reference proteome, with a median protein sequence coverage of 51%. These analyses, together with expert knowledge in diverse aspects of cell biology, provide meaningful insights into processes such as N-terminal protein maturation, N-glycosylation, and metabolism. Altogether, ArcPP serves as an invaluable blueprint for comprehensive prokaryotic proteomics.


Assuntos
Proteínas Arqueais/metabolismo , Haloferax volcanii/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Conjuntos de Dados como Assunto , Glicosilação , Espectrometria de Massas
8.
Proteomics ; 18(14): e1800116, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29888524

RESUMO

The dynamic changes that take place along the phases of microbial growth (lag, exponential, stationary, and death) have been widely studied in bacteria at the molecular and cellular levels, but little is known for archaea. In this study, a high-throughput approach was used to analyze and compare the proteomes of two haloarchaea during exponential and stationary growth: the neutrophilic Haloferax volcanii and the alkaliphilic Natrialba magadii. Almost 2000 proteins were identified in each species (≈50% of the predicted proteome). Among them, 532 and 432 were found to be differential between growth phases in H. volcanii and N. magadii, respectively. Changes upon entrance into stationary phase included an overall increase in proteins involved in the transport of small molecules and ions, stress response, and fatty acid catabolism. Proteins related to genetic processes and cell division showed a notorious decrease in amount. The data reported in this study not only contributes to our understanding of the exponential-stationary growth phase transition in extremophilic archaea but also provides the first comprehensive analysis of the proteome composition of N. magadii. The MS proteomics data have been deposited in the ProteomeXchange Consortium with the dataset identifier JPST000395.


Assuntos
Proteínas Arqueais/metabolismo , Halobacteriaceae/crescimento & desenvolvimento , Halobacteriaceae/metabolismo , Haloferax volcanii/crescimento & desenvolvimento , Haloferax volcanii/metabolismo , Espectrometria de Massas/métodos , Proteoma/análise
9.
Int J Biol Macromol ; 113: 1134-1141, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29524492

RESUMO

Nep (Natrialba magadii extracellular protease) is a halolysin-like peptidase secreted by the haloalkaliphilic archaeon Natrialba magadii. Many extracellular proteases have been characterized from archaea to bacteria as adapted to hypersaline environments retaining function and stability until 4.0M NaCl. As observed in other secreted halolysins, this stability can be related to the presence of a C-terminal extension (CTE) sequence. In the present work, we compared the biochemical properties of recombinant Nep protease with the truncated form at the 134 amino acids CTE (Nep∆CTE), that was more active in 4M NaCl than the non-truncated wild type enzyme. Comparable to the wild type, Nep∆CTE protease is irreversibly inactivated at low salt solutions. The substrate specificity of the truncated Nep∆CTE was similar to that of wild type form as demonstrated by a combinatorial library of FRET substrates. The enzyme stability, the effect of different salts and the thermodynamics assays using different lengths of substrates demonstrated similarities between the two forms. Altogether, these data provide further information on the stability and structural determinants of halolysins under different salinities, especially concerning the enzymatic behavior.


Assuntos
Espaço Extracelular/enzimologia , Halobacteriaceae/citologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Sais/farmacologia , Relação Dose-Resposta a Droga , Halobacteriaceae/enzimologia , Cinética , Solventes/química , Relação Estrutura-Atividade , Especificidade por Substrato
10.
J Proteome Res ; 17(3): 1158-1171, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29411617

RESUMO

The membrane protease LonB is an essential protein in the archaeon Haloferax volcanii and globally impacts its physiology. However, natural substrates of the archaeal Lon protease have not been identified. The whole proteome turnover was examined in a H. volcanii LonB mutant under reduced and physiological protease levels. LC-MS/MS combined with stable isotope labeling was applied for the identification/quantitation of membrane and cytoplasm proteins. Differential synthesis and degradation rates were evidenced for 414 proteins in response to Lon expression. A total of 58 proteins involved in diverse cellular processes showed a degradation pattern (none/very little degradation in the absence of Lon and increased degradation in the presence of Lon) consistent with a LonB substrate, which was further substantiated for several of these candidates by pull-down assays. The most notable was phytoene synthase (PSY), the rate-limiting enzyme in carotenoid biosynthesis. The rapid degradation of PSY upon LonB induction in addition to the remarkable stabilization of this protein and hyperpigmentation phenotype in the Lon mutant strongly suggest that PSY is a LonB substrate. This work identifies for the first time candidate targets of the archaeal Lon protease and establishes proteolysis by Lon as a novel post-translational regulatory mechanism of carotenogenesis.


Assuntos
Proteínas Arqueais/metabolismo , Carotenoides/biossíntese , Regulação da Expressão Gênica em Archaea , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Haloferax volcanii/enzimologia , Protease La/metabolismo , Proteoma/metabolismo , Proteínas Arqueais/genética , Cromatografia Líquida , Ontologia Genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Haloferax volcanii/genética , Marcação por Isótopo/métodos , Anotação de Sequência Molecular , Mutação , Protease La/genética , Biossíntese de Proteínas , Proteólise , Proteoma/genética , Especificidade por Substrato , Espectrometria de Massas em Tandem
11.
J Proteome Res ; 17(3): 961-977, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301397

RESUMO

Rhomboids are conserved intramembrane serine proteases involved in cell signaling processes. Their role in prokaryotes is scarcely known and remains to be investigated in Archaea. We previously constructed a rhomboid homologue deletion mutant (ΔrhoII) in Haloferax volcanii, which showed reduced motility, increased novobiocin sensitivity, and an N- glycosylation defect. To address the impact of rhoII deletion on H. volcanii physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. A total of 1847 proteins were identified (45.8% of H. volcanii predicted proteome), from which 103 differed in amount. Additionally, the mutant strain evidenced 99 proteins with altered electrophoretic migration, which suggested differential post-translational processing/modification. Integral membrane proteins that evidenced variations in concentration, electrophoretic migration, or semitryptic cleavage in the mutant were considered as potential RhoII targets. These included a PrsW protease homologue (which was less stable in the mutant strain), a predicted halocyanin, and six integral membrane proteins potentially related to the mutant glycosylation (S-layer glycoprotein, Agl15) and cell adhesion/motility (flagellin1, HVO_1153, PilA1, and PibD) defects. This study investigated for the first time the impact of a rhomboid protease on the whole proteome of an organism.


Assuntos
Proteínas Arqueais/genética , Deleção de Genes , Regulação da Expressão Gênica em Archaea , Haloferax volcanii/genética , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteínas Arqueais/classificação , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Adesão Celular , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Endopeptidases/deficiência , Endopeptidases/genética , Ontologia Genética , Glicosilação , Haloferax volcanii/química , Haloferax volcanii/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Metaloproteínas/genética , Metaloproteínas/metabolismo , Anotação de Sequência Molecular , Proteoma/classificação , Proteoma/isolamento & purificação , Proteoma/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato
12.
Artigo em Inglês | MEDLINE | ID: mdl-29180238

RESUMO

We studied the existence, biochemical characteristics and response to different environmental salinities of amylase, maltase and sucrase activity in the intertidal euryhaline crab Cyrtograpsus angulatus (Dana, 1852) along with the response to distinct salinities of glycogen and free glucose content in storage organs. Amylase, maltase and sucrase activities were kept over a broad range of pH and temperature and exhibited Michaelis-Menten kinetics. Zymography showed the existence of two amylase forms in crabs exposed to 35 (osmoconformation) and low (6-10psu; hyper-regulation) or high (40psu) (hypo-regulation) salinities. Carbohydrases activity in the hepatopancreas and glycemia were not affected in crab exposed to different environmental salinities. In 6 and 40psu, the glycogen content in anterior gills was lower than in 35psu. In 6, 10 and 40psu, glycogen concentration in hepatopancreas, muscle and posterior gills were similar to that in 35psu. Free glucose concentration in chela muscle was higher in 6 and 40psu than in 35psu. The existence and biochemical characteristics of carbohydrases activity and the adjustments in concentration of glycogen in anterior gills and free glucose in chela muscle suggests the ability to perform complete hydrolysis of glycogenic substrates and to keep glucose homeostasis in relation to acclimation to different salinity conditions.


Assuntos
Amilases/metabolismo , Proteínas de Artrópodes/metabolismo , Braquiúros/metabolismo , Glucose/metabolismo , Hepatopâncreas/metabolismo , Salinidade , Sacarase/metabolismo , alfa-Glucosidases/metabolismo , Animais
13.
Extremophiles ; 19(6): 1133-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26369649

RESUMO

The biodiversity and biotechnological potential of microbes from central Argentinean halophilic environments have been poorly explored. Salitral Negro and Colorada Grande salterns are neutral hypersaline basins exploded for NaCl extraction. As part of an ecological analysis of these environments, two bacterial and seven archaeal representatives were isolated, identified and examined for their biotechnological potential. The presence of hydrolases (proteases, amylases, lipases, cellulases and nucleases) and bioactive molecules (surfactants and antimicrobial compounds) was screened. While all the isolates exhibited at least one of the tested activities or biocompounds, the species belonging to Haloarcula genus were the most active, also producing antimicrobial compounds against their counterparts. In general, the biosurfactants were more effective against olive oil and aromatic compounds than detergents (SDS or Triton X-100). Our results demonstrate the broad spectrum of activities with biotechnological potential exhibited by the microorganisms inhabiting the Argentinean salterns and reinforce the importance of screening pristine extreme environments to discover interesting/novel bioactive molecules.


Assuntos
Haloarcula/metabolismo , Microbiologia Industrial/métodos , Tensoativos/metabolismo , Anti-Infecciosos/metabolismo , Proteínas Arqueais/metabolismo , Haloarcula/enzimologia , Haloarcula/genética , Haloarcula/isolamento & purificação , Hidrolases/metabolismo , Tolerância ao Sal
14.
Data Brief ; 4: 50-3, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26217762

RESUMO

This data article provides information in support of the research article "Global role of the membrane protease LonB in Archaea: Potential protease targets revealed by quantitative proteome analysis of a lonB mutant in Haloferax volcanii" [1]. The proteome composition of a wt and a LonB protease mutant strain (suboptimal expression) in the archaeon Haloferax volcanii was assessed by a quantitative shotgun proteomic approach. Membrane and cytosol fractions of H. volcanii strains were examined at two different growth stages (exponential and stationary phase). Data is supplied in the present article. This study represents the first proteome examination of a Lon-deficient cell of the Archaea Domain.

15.
J Proteomics ; 121: 1-14, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25829260

RESUMO

The membrane-associated LonB protease is essential for viability in Haloferax volcanii, however, the cellular processes affected by this protease in archaea are unknown. In this study, the impact of a lon conditional mutation (down-regulation) on H. volcanii physiology was examined by comparing proteomes of parental and mutant cells using shotgun proteomics. A total of 1778 proteins were identified (44% of H. volcanii predicted proteome) and 142 changed significantly in amount (≥2 fold). Of these, 66 were augmented in response to Lon deficiency suggesting they could be Lon substrates. The "Lon subproteome" included soluble and predicted membrane proteins expected to participate in diverse cellular processes. The dramatic stabilization of phytoene synthase (57 fold) in concert with overpigmentation of lon mutant cells suggests that Lon controls carotenogenesis in H. volcanii. Several hypothetical proteins, which may reveal novel functions and/or be involved in adaptation to extreme environments, were notably increased (300 fold). This study, which represents the first proteome examination of a Lon deficient archaeal cell, shows that Lon has a strong impact on H. volcanii physiology evidencing the cellular processes controlled by this protease in Archaea. Additionally, this work provides a platform for the discovery of novel targets of Lon proteases. BIOLOGICAL SIGNIFICANCE: The proteome of a Lon-deficient archaeal cell was examined for the first time showing that Lon has a strong impact on H. volcanii physiology and evidencing the proteins and cellular processes controlled by this protease in Archaea. This work will facilitate future investigations aiming to address Lon function in archaea and provides a platform for the discovery of endogenous targets of the archaeal-type Lon as well as novel targets/processes regulated by Lon proteases. This knowledge will advance the understanding on archaeal physiology and the biological function of membrane proteases in microorganisms.


Assuntos
Proteínas Arqueais/metabolismo , Haloferax volcanii/enzimologia , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Proteoma/metabolismo , Aminoácidos/química , Carotenoides/química , Membrana Celular/metabolismo , Citoplasma/metabolismo , Eletroforese em Gel de Poliacrilamida , Metabolismo dos Lipídeos , Mutação , Proteômica , Espectrometria de Massas por Ionização por Electrospray
16.
Electrophoresis ; 35(24): 3518-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224925

RESUMO

Proteins present in the archaeal cell envelope play key roles in a variety of processes necessary for survival in extreme environments. The haloarchaeon Haloferax volcanii is a good model for membrane proteomic studies because its genome sequence is known, it can be genetically manipulated, and a number of studies at the "omics" level have been performed in this organism. This work reports an easy strategy to improve the resolution of acidic membrane proteins from H. volcanii by 2DE. The method is based on the solubilization, delipidation, and salt removal from membrane proteins. Due to the abundance of the S-layer glycoprotein (SLG) in membrane protein extracts, other proteins from the envelope are consequently underrepresented. Thus, a protocol to reduce the amount of the SLG by EDTA treatment was applied and 11 cm narrow range pH (3.9-5.1) IPG strips were used to fractionate the remaining proteins. Using this method, horizontal streaking was substantially decreased and at least 75 defined spots (20% of the predicted membrane proteome within this pI/Mw range) were reproducibly detected. Two of these spots were identified as thermosome subunit 1 and NADH dehydrogenase from H. volcanii, confirming that proteins from the membrane fraction were enriched. Removal of the SLG from membrane protein extracts can be applied to increase protein load for 2DE as well as for other proteomic methods.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/isolamento & purificação , Eletroforese em Gel Bidimensional/métodos , Haloferax volcanii/química , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Proteínas Arqueais/análise , Concentração de Íons de Hidrogênio , Proteínas de Membrana/análise
17.
J Biol Chem ; 289(16): 11304-11317, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24596091

RESUMO

Rhomboid proteases occur in all domains of life; however, their physiological role is not completely understood, and nothing is known of the biology of these enzymes in Archaea. One of the two rhomboid homologs of Haloferax volcanii (RhoII) is fused to a zinc finger domain. Chromosomal deletion of rhoII was successful, indicating that this gene is not essential for this organism; however, the mutant strain (MIG1) showed reduced motility and increased sensitivity to novobiocin. Membrane preparations of MIG1 were enriched in two glycoproteins, identified as the S-layer glycoprotein and an ABC transporter component. The H. volcanii S-layer glycoprotein has been extensively used as a model to study haloarchaeal protein N-glycosylation. HPLC analysis of oligosaccharides released from the S-layer glycoprotein after PNGase treatment revealed that MIG1 was enriched in species with lower retention times than those derived from the parent strain. Mass spectrometry analysis showed that the wild type glycoprotein released a novel oligosaccharide species corresponding to GlcNAc-GlcNAc(Hex)2-(SQ-Hex)6 in contrast to the mutant protein, which contained the shorter form GlcNAc2(Hex)2-SQ-Hex-SQ. A glycoproteomics approach of the wild type glycopeptide fraction revealed Asn-732 peptide fragments linked to the sulfoquinovose-containing oligosaccharide. This work describes a novel N-linked oligosaccharide containing a repeating SQ-Hex unit bound to Asn-732 of the H. volcanii S-layer glycoprotein, a position that had not been reported as glycosylated. Furthermore, this study provides the first insight on the biological role of rhomboid proteases in Archaea, suggesting a link between protein glycosylation and this protease family.


Assuntos
Endopeptidases/metabolismo , Haloferax volcanii/metabolismo , Glicoproteínas de Membrana/metabolismo , Oligossacarídeos/metabolismo , Endopeptidases/genética , Técnicas de Silenciamento de Genes , Glicosilação , Haloferax volcanii/genética , Glicoproteínas de Membrana/genética , Oligossacarídeos/genética
18.
Environ Microbiol ; 16(6): 1779-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24428705

RESUMO

Although homologs of the ATP-dependent Lon protease exist in all domains of life, the relevance of this protease in archaeal physiology remains a mystery. In this study, we have constructed and phenotypically characterized deletion and conditional lon mutants in the model haloarchaeon Haloferax volcanii to elucidate the role of the unusual membrane-bound LonB protease in archaea. Hvlon could be deleted from the chromosome only when a copy of the wild type gene was provided in trans suggesting that Lon is essential for survival in this archaeon. Successful complementation of the lethal phenotype of ΔHvlon was attained by expression of the heterologous protease gene Nmlon from the haloalkaliphilic archaeon Natrialba magadii, meaning that the biological function of Lon is conserved in these organisms. Suboptimal cellular levels of Lon protein affected growth rate, cell shape, cell pigmentation, lipid composition and sensitivity to various antibiotics. The contents of bacterioruberins and some polar lipids were increased in the lon mutants suggesting that Lon is linked to maintenance of membrane lipid balance which likely affects cell viability in this archaeon. The phenotypes associated to a membrane-bound LonB protease mutant were examined for the first time providing insight on the relevance of this protease in archaeal physiology.


Assuntos
Proteínas Arqueais/genética , Haloferax volcanii/enzimologia , Lipídeos de Membrana/metabolismo , Peptídeo Hidrolases/genética , Antibacterianos/farmacologia , Proteínas Arqueais/metabolismo , Bacitracina/farmacologia , Sequência de Bases , Expressão Gênica , Regulação da Expressão Gênica em Archaea , Haloferax volcanii/efeitos dos fármacos , Lovastatina/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Novobiocina/farmacologia , Peptídeo Hidrolases/metabolismo , Pigmentação , Ligação Proteica , Puromicina/farmacologia
19.
J Bacteriol ; 194(14): 3700-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22582277

RESUMO

Halolysins are subtilisin-like extracellular proteases produced by haloarchaea that possess unique protein domains and are salt dependent for structural integrity and functionality. In contrast to bacterial subtilases, the maturation mechanism of halolysins has not been addressed. The halolysin Nep is secreted by the alkaliphilic haloarchaeon Natrialba magadii, and the recombinant active enzyme has been synthesized in Haloferax volcanii. Nep contains an N-terminal signal peptide with the typical Tat consensus motif (GRRSVL), an N-terminal propeptide, the protease domain, and a C-terminal domain. In this study, we used Nep as a model protease to examine the secretion and maturation of halolysins by using genetic and biochemical approaches. Mutant variants of Nep were constructed by site-directed mutagenesis and expressed in H. volcanii, which were then analyzed by protease activity and Western blotting. The Tat dependence of Nep secretion was demonstrated in Nep RR/KK variants containing double lysine (KK) in place of the twin arginines (RR), in which Nep remained cell associated and the extracellular activity was undetectable. High-molecular-mass Nep polypeptides without protease activity were detected as cell associated and extracellularly in the Nep S/A variant, in which the catalytic serine 352 had been changed by alanine, indicating that Nep protease activity was needed for precursor processing and activation. Nep NSN 1-2 containing a modification in two potential cleavage sites for signal peptidase I (ASA) was not efficiently processed and activated. This study examined for the first time the secretion and maturation of a Tat-dependent halophilic subtilase.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Serina Endopeptidases/metabolismo , Archaea/genética , Proteínas Arqueais/genética , Transporte Proteico , Serina Endopeptidases/genética
20.
BMC Genomics ; 13: 165, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22559199

RESUMO

BACKGROUND: Natrialba magadii is an aerobic chemoorganotrophic member of the Euryarchaeota and is a dual extremophile requiring alkaline conditions and hypersalinity for optimal growth. The genome sequence of Nab. magadii type strain ATCC 43099 was deciphered to obtain a comprehensive insight into the genetic content of this haloarchaeon and to understand the basis of some of the cellular functions necessary for its survival. RESULTS: The genome of Nab. magadii consists of four replicons with a total sequence of 4,443,643 bp and encodes 4,212 putative proteins, some of which contain peptide repeats of various lengths. Comparative genome analyses facilitated the identification of genes encoding putative proteins involved in adaptation to hypersalinity, stress response, glycosylation, and polysaccharide biosynthesis. A proton-driven ATP synthase and a variety of putative cytochromes and other proteins supporting aerobic respiration and electron transfer were encoded by one or more of Nab. magadii replicons. The genome encodes a number of putative proteases/peptidases as well as protein secretion functions. Genes encoding putative transcriptional regulators, basal transcription factors, signal perception/transduction proteins, and chemotaxis/phototaxis proteins were abundant in the genome. Pathways for the biosynthesis of thiamine, riboflavin, heme, cobalamin, coenzyme F420 and other essential co-factors were deduced by in depth sequence analyses. However, approximately 36% of Nab. magadii protein coding genes could not be assigned a function based on Blast analysis and have been annotated as encoding hypothetical or conserved hypothetical proteins. Furthermore, despite extensive comparative genomic analyses, genes necessary for survival in alkaline conditions could not be identified in Nab. magadii. CONCLUSIONS: Based on genomic analyses, Nab. magadii is predicted to be metabolically versatile and it could use different carbon and energy sources to sustain growth. Nab. magadii has the genetic potential to adapt to its milieu by intracellular accumulation of inorganic cations and/or neutral organic compounds. The identification of Nab. magadii genes involved in coenzyme biosynthesis is a necessary step toward further reconstruction of the metabolic pathways in halophilic archaea and other extremophiles. The knowledge gained from the genome sequence of this haloalkaliphilic archaeon is highly valuable in advancing the applications of extremophiles and their enzymes.


Assuntos
Genômica , Halobacteriaceae/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Mapeamento Cromossômico , Cromossomos de Archaea , Coenzimas/biossíntese , Genoma Arqueal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA