Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1266199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877080

RESUMO

Introduction: Future long-term space missions will focus to the solar system exploration, with the Moon and Mars as leading goals. Plant cultivation will provide fresh food as a healthy supplement to astronauts' diet in confined and unhealthy outposts. Ionizing radiation (IR) are a main hazard in outer space for their capacity to generate oxidative stress and DNA damage. IR is a crucial issue not only for human survival, but also for plant development and related value-added fresh food harvest. To this end, efforts to figure out how biofortification of plants with antioxidant metabolites (such as anthocyanins) may contribute to improve their performances in space outposts are needed. Methods: MicroTom plants genetically engineered to express the Petunia hybrida PhAN4 gene, restoring the biosynthesis of anthocyanins in tomato, were used. Seeds and plants from wild type and engineered lines AN4-M and AN4-P2 were exposed to IR doses that they may experience during a long-term space mission, simulated through the administration of gamma radiation. Plant response was continuously evaluated along life cycle by a non-disturbing/non-destructive monitoring of biometric and multiparametric fluorescence-based indices at both phenotypic and phenological levels, and indirectly measuring changes occurring at the primary and secondary metabolism level. Results: Responses to gamma radiation were influenced by the phenological stage, dose and genotype. Wild type and engineered plants did not complete a seed-to-seed cycle under the exceptional condition of 30 Gy absorbed dose, but were able to cope with 0.5 and 5 Gy producing fruits and vital seeds. In particular, the AN4-M seeds and plants showed advantages over wild type: negligible variation of fluorimetric parameters related to primary metabolism, no alteration or improvement of yield traits at maturity while maintaining smaller habitus than wild type, biosynthesis of anthocyanins and maintained levels of these compounds compared to non-irradiated controls of the same age. Discussion: These findings may be useful in understanding phenotypic effects of IR on plant growth in space, and lead to the exploitation of new breeding efforts to optimize plant performances to develop appropriate ideotypes for future long-term space exploration extending the potential of plants to serve as high-value product source.

2.
Foods ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174346

RESUMO

Celiac disease is an immune-mediated disorder caused by the ingestion of gluten proteins. The gluten-free diet is currently the only therapy to achieve the symptoms' remission. Biotechnological approaches are currently being explored to obtain safer and healthier food for celiacs. This article analyzes consumer awareness and acceptance of advanced biotechnologies to develop gluten-free products. An online snowball sampling questionnaire was proposed to 511 Italian participants, selected among celiac and non-celiac people, from December 2020 to January 2021, during the second wave of the COVID-19 pandemic. Overall, 64% of respondents favor food biotechnology, as long as it has benefits for health or the environment. Moreover, biotechnology perception differs according to education level and type. A total of 65% of the survey participants would taste gluten-free products obtained through a biotechnological approach, and 57% would buy them at a higher price than the current market price. Our results show a change in public opinion about the usefulness of food biotechnology and its moral acceptability compared to 20 years ago. However, the study of public opinion is very complex, dealing with individuals with social, economic, and cultural differences. Undoubtedly, the scientific dissemination of genetic biotechnologies must be more effective and usable to increase the level of citizens' awareness.

3.
Life Sci Space Res (Amst) ; 36: 8-17, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682833

RESUMO

Space exploration beyond the Low Earth Orbit requires the establishment of Bioregenerative Life Support Systems (BLSSs), which, through bioprocesses for primary resource recycling, ensure crew survival. However, the introduction of new organisms in confined space habitats must be carefully evaluated in advance to avoid unforeseen events that could compromise the mission. In this work, we have designed and built an experimental chamber, named Growing/Rearing Module (GRM), completely isolated and equipped with micro-environmental monitoring and control systems. This unit is specially intended for the study of single bioprocesses, which can be composed to design functional BLSSs. GRM can be implemented with specific devices for the biological system under study and the control of environmental parameters such as temperature, humidity, lighting and if required, pressure of gaseous components. GRM was validated in experiments of both microgreen cultivation, as a source of fresh food for astronauts, and rearing of the decomposer insect Hermetia illucens for bioconversion of organic waste. During the study of each bioprocess, the environmental and biological data were recorded, allowing to make preliminary assessments of the system efficiency. The GRM, as a completely confined environment, represents the first self-consistent unit that allows to fine-tune the optimal parameters for the operability of different bioprocesses. Furthermore, the upgradability according to the mission needs and the functional integrability of modules differently equipped are the keys to GRM versatility, representing a valuable tool for BLSSs' design.


Assuntos
Sistemas Ecológicos Fechados , Voo Espacial , Sistemas de Manutenção da Vida , Planeta Terra , Iluminação
4.
J Clin Med ; 11(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268556

RESUMO

Human papillomavirus (HPV) still represents an important threat to health worldwide. Better therapy in terms of further improvement of outcomes and attenuation of related side-effects is desirable. The pharmaceutical industry has always targeted natural substances-phytochemicals in particular-to identify lead compounds to be clinically validated and industrially produced as antiviral and anticancer drugs. In the field of HPV, numerous naturally occurring bioactives and dietary phytochemicals have been investigated as potentially valuable in vitro and in vivo. Interference with several pathways and improvement of the efficacy of chemotherapeutic agents have been demonstrated. Notably, some clinical trials have been conducted. Despite being endowed with general safety, these natural substances are in urgent need of further assessment to foresee their clinical exploitation. This review summarizes the basic research efforts conducted so far in the study of anti-HPV properties of bio-actives with insights into their mechanisms of action and highlights the variety of their natural origin in order to provide comprehensive mapping throughout the different sources. The clinical studies available are reported, as well, to highlight the need of uniformity and consistency of studies in the future to select those natural compounds that may be suited to clinical application.

5.
Front Plant Sci ; 13: 830931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283922

RESUMO

Gene expression manipulation of specific metabolic pathways can be used to obtain bioaccumulation of valuable molecules and desired quality traits in plants. A single-gene approach to impact different traits would be greatly desirable in agrospace applications, where several aspects of plant physiology can be affected, influencing growth. In this work, MicroTom hairy root cultures expressing a MYB-like transcription factor that regulates the biosynthesis of anthocyanins in Petunia hybrida (PhAN4), were considered as a testbed for bio-fortified tomato whole plants aimed at agrospace applications. Ectopic expression of PhAN4 promoted biosynthesis of anthocyanins, allowing to profile 5 major derivatives of delphinidin and petunidin together with pelargonidin and malvidin-based anthocyanins, unusual in tomato. Consistent with PhAN4 features, transcriptomic profiling indicated upregulation of genes correlated to anthocyanin biosynthesis. Interestingly, a transcriptome reprogramming oriented to positive regulation of cell response to biotic, abiotic, and redox stimuli was evidenced. PhAN4 hairy root cultures showed the significant capability to counteract reactive oxygen species (ROS) accumulation and protein misfolding upon high-dose gamma irradiation, which is among the most potent pro-oxidant stress that can be encountered in space. These results may have significance in the engineering of whole tomato plants that can benefit space agriculture.

6.
Theor Appl Genet ; 132(2): 419-429, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30426174

RESUMO

KEY MESSAGE: Knocking down GW2 enhances grain size by regulating genes encoding the synthesis of cytokinin, gibberellin, starch and cell wall. Raising crop yield is a priority task in the light of the continuing growth of the world's population and the inexorable loss of arable land to urbanization. Here, the RNAi approach was taken to reduce the abundance of Grain Weight 2 (GW2) transcript in the durum wheat cultivar Svevo. The effect of the knockdown was to increase the grains' starch content by 10-40%, their width by 4-13% and their surface area by 3-5%. Transcriptomic profiling, based on a quantitative real-time PCR platform, revealed that the transcript abundance of genes encoding both cytokinin dehydrogenase 1 and the large subunit of ADP-glucose pyrophosphorylase was markedly increased in the transgenic lines, whereas that of the genes encoding cytokinin dehydrogenase 2 and gibberellin 3-oxidase was reduced. A proteomic analysis of the non-storage fraction extracted from mature grains detected that eleven proteins were differentially represented in the transgenic compared to wild-type grain: some of these were involved, or at least potentially involved, in cell wall development, suggesting a role of GW2 in the regulation of cell division in the wheat grain.


Assuntos
Genes de Plantas , Interferência de RNA , Sementes/crescimento & desenvolvimento , Triticum/genética , Parede Celular , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose-1-Fosfato Adenililtransferase/genética , Oxigenases de Função Mista/genética , Oxirredutases/genética , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Proteoma , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA