Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35624767

RESUMO

The production of olive oil generates olive mill wastewater (OMW) which essentially derives from the processing, treatment and pressing of olives in mills. Traditional milling processes require a quantity of water varying between 40 and 120 L per quintal of pressed olives, generating a considerable amount of wastewater. It is thus necessary to reduce process water and enhance its use to implement the concept of a circular economy. To this end, our preliminary work was dedicated to water purification by means of suitable and efficient filtration systems. The microfiltered OMW was firstly concentrated through reverse osmosis. Then, an additional concentration step was carried out via vacuum membrane distillation using hydrophobic hollow fiber membranes. The application of the membrane-based processes allowed the recovery of a purified water and the concentration of valuable polyphenols in a smaller volume. The different fractions obtained from the purification have been tested for the determination of the antioxidant power (DPPH assay) and dosage of polyphenols (Folin-Ciocalteu assay) and were characterized using IR spectroscopy. All samples showed relevant antioxidant activity (percentage range: 10-80%) and total phenolic content in the 1.5-15 g GAE/L range. The obtained fractions were tested for their antimicrobial effect on numerous clinical isolates of Gram-positive and Gram-negative species, resistant and multi-resistant to current antibiotic drugs. OMW samples showed widespread activity against the considered (phyto)pathogens (MIC range 8-16 mg/mL) thus supporting the value of this waste material in the (phyto)pharmaceutical field.

2.
Membranes (Basel) ; 11(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832124

RESUMO

Membrane distillation is a growing technology that can address the growing problem of water shortage. The implementation of renewable energy and a reduction in the environmental impact of membrane production could improve the sustainability of this process. With this perspective, porous hydrophobic polyvinylidene fluoride (PVDF) membranes were prepared using triethyl phosphate (TEP) as a green solvent, using the non-solvent induced phase separation technique. Different amounts of carbon black were added to dope solutions to improve the photothermal properties of the membranes and to enable direct heating by solar energy. By optimizing the preparation conditions, membranes with porosity values as high as 87% were manufactured. Vacuum membrane distillation tests carried out using a concentrated NaCl solution at 50 °C showed distillate fluxes of up to 36 L/m2 h and a complete salt rejection. Some preliminary studies on the photothermal performance were also conducted and highlighted the possibility of using such membranes in a direct solar membrane distillation configuration.

3.
Membranes (Basel) ; 10(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187114

RESUMO

The disposal of wastewater resulting from olive oil production (olive mill wastewater, OMW) is a major issue for olive oil producers. This wastewater is among the most polluting due to the very high concentration of organic substances and the presence of hardly degradable phenolic compounds. The systems proposed for OMW treatment are essentially based either on conventional chemical-physical, biological and thermal processes, or on membrane processes. With respect to conventional methods, membrane processes allow to separate different species without the use of chemicals or heat. This work deals with the use of the integrated pressure-driven membrane processes for the treatment of OMW. They consist of a first stage (microfiltration, MF) in which a porous multichannel ceramic membrane retains suspended materials and produces a clarified permeate for a second stage (reverse osmosis, RO), in order to separate (and concentrate) dissolved substances from water. Laboratory scale experiments with different small flat sheet RO membranes were first carried out in order to select the most appropriate one for the successive bench scale tests with a spiral wound module having a large membrane surface. The aim of this test was to concentrate the dissolved substances and to produce water with low salinity, chemical oxygen demand (COD), and reduced phytotoxicity due to a low content of phenolic compounds. The trend of the permeate flux and membrane retention as a function of the volume concentration ratio was investigated. The influence of OMW origin and its aging on the membrane performance was also studied.

4.
Materials (Basel) ; 13(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105898

RESUMO

An experimental study of hydrogen sulfide adsorption on a fixed bed for biogas purification is proposed. The adsorbent investigated was powdered hematite, synthesized by a wet-chemical precipitation method and further activated with copper (II) oxide, used both as produced and after pelletization with polyvinyl alcohol as a binder. The pelletization procedure aims at optimizing the mechanical properties of the pellet without reducing the specific surface area. The active substrate has been characterized in its chemical composition and physical properties by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), thermogravimetric analysis (TGA) and N2 physisorption/desorption for the determination of surface area. Both powders and pellets have been tested as sorbents for biogas purification in a fixed bed of a steady-state adsorption column and the relevant breakthrough curves were determined for different operating conditions. The performance was critically analyzed and compared with that typical of other commercial sorbents based on zinc oxide or relying upon specific compounds supported on a chemically inert matrix (SulfaTreat®). The technique proposed may represent a cost-effective and sustainable alternative to commercial sorbents in conventional desulphurization processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA