Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; : e2400026, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640919

RESUMO

In vitro studies have demonstrated that the differentiation of embryonic stem cells (ESCs) into cardiomyocytes requires activation of caspases through the mitochondrial pathway. These studies have relied on synthetic substrates for activity measurements, which can be misleading due to potential none-specific hydrolysis of these substrates by proteases other than caspases. Hence, caspase-9 and caspase-3 activation are investigated during the differentiation of human ESCs (hESCs) by directly assessing caspase-9 and -3 cleavage. Western blot reveals the presence of the cleaved caspase-9 prior to and during the differentiation of human ESCs (hESCs) into cardiomyocytes at early stages, which diminishes as the differentiation progresses, without cleavage and activation of endogenous procaspase-3. Activation of exogenous procaspase-3 by endogenous caspase-9 and subsequent cleavage of chromogenic caspase-3 substrate i.e. DEVD-pNA during the course of differentiation confirmes that endogenous caspase-9 has the potency to recognize and activate procaspase-3, but for reasons that are unknown to us fails to do so. These observations suggest the existence of distinct mechanisms of caspase regulation in differentiation as compared to apoptosis. Bioinformatics analysis suggests the presence of caspase-9 regulators, which may influence proteolytic function under specific conditions.

2.
Biomed Pharmacother ; 172: 116248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325262

RESUMO

Myocardial infarction (MI) is the leading cause of heart failure (HF), accounting for high mortality and morbidity worldwide. As a consequence of ischemia/reperfusion injury during MI, multiple cellular processes such as oxidative stress-induced damage, cardiomyocyte death, and inflammatory responses occur. In the next stage, the proliferation and activation of cardiac fibroblasts results in myocardial fibrosis and HF progression. Therefore, developing a novel therapeutic strategy is urgently warranted to restrict the progression of pathological cardiac remodeling. Recently, targeting long non-coding RNAs (lncRNAs) provided a novel insight into treating several disorders. In this regard, numerous investigations have indicated that several lncRNAs could participate in the pathogenesis of MI-induced cardiac remodeling, suggesting their potential therapeutic applications. In this review, we summarized lncRNAs displayed in the pathophysiology of cardiac remodeling after MI, emphasizing molecular mechanisms. Also, we highlighted the possible translational role of lncRNAs as therapeutic targets for this condition and discussed the potential role of exosomes in delivering the lncRNAs involved in post-MI cardiac remodeling.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Remodelação Ventricular/genética , Infarto do Miocárdio/genética , Insuficiência Cardíaca/genética , Miócitos Cardíacos
3.
Int J Biol Macromol ; 259(Pt 2): 129228, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184051

RESUMO

Reactive oxygen species (ROS) play essential roles in cellular functions, but maintaining ROS balance is crucial for effective therapeutic interventions, especially during cell therapy. In this study, we synthesized an injectable gelatin-based hydrogel, in which polydopamine nanoparticles were entrapped using supramolecular interactions. The surfaces of the nanoparticles were modified using adamantane, enabling their interactions with ß-cyclodextrin-conjugated with gelatin. We evaluated the cytotoxicity and antioxidant properties of the hydrogel on neonatal rat cardiomyocytes (NRCM), where it demonstrated the ability to increase the metabolic activity of NRCMs exposed to hydrogen peroxide (H2O2) after 5 days. Hydrogel-entrapped nanoparticle exhibited a high scavenging capability against hydroxyl radical, 1'-diphenyl-2-picrylhydrazyl radicals, and H2O2, surpassing the effectiveness of ascorbic acid solution. Notably, the presence of polydopamine nanoparticles within the hydrogel promoted the proliferation activity of NRCMs, even in the absence of excessive ROS due to H2O2 treatment. Additionally, when the hydrogel with nanoparticles was injected into an air pouch model, it reduced inflammation and infiltration of immune cells. Notably, the levels of anti-inflammatory factors, IL-10 and IL-4, were significantly increased, while the pro-inflammatory factor TNF-α was suppressed. Therefore, this novel ROS-scavenging hydrogel holds promise for both efficient cell delivery into inflamed tissue and promoting tissue repair.


Assuntos
Hidrogéis , Indóis , Nanopartículas , Polímeros , Ratos , Animais , Hidrogéis/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Gelatina/farmacologia , Miócitos Cardíacos/metabolismo , Peróxido de Hidrogênio/farmacologia , Proliferação de Células
4.
J Tehran Heart Cent ; 18(3): 177-182, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38146406

RESUMO

Background: Aortic valve replacement (AVR) may complicate conduction abnormalities and require permanent pacemaker (PPM) implantation. New techniques that lessen this challenge may lead to the development of new approaches. Our objective was to evaluate the contemporary incidence of early postoperative PPM implantation in patients undergoing isolated AVR and root disease with the standard AVR surgical technique compared with the novel suture AVR technique. Methods: The clinical data of 354 patients (250 male, 104 female) who underwent surgery for isolated AVR and root disease in different referral cardiology departments in Tabriz, Iran, over 4 years were analyzed. Patients with preoperative significant conduction abnormalities were excluded from the study. The patients were evaluated for in-hospital mortality, postoperative PPM implantation, and their stay in the ICU after surgery. Results: The mean age of the patients was 52.46±16.13 years. Totally, 183 patients (51.7%) were operated on with the new suture AVR technique. In-hospital mortality was lower in this group than in the group that underwent the "classic" surgical technique (2.5% vs 3.7%). PPM implantation was required in 3 patients (0.8%) after the novel suture AVR technique, whereas it was needed in 12 patients (3.4%) in the other group (P=0.024). The mortality rate was 9 patients (2.5%) in group 1 and 13 patients (3.7%) in group 2, which was not statistically significant (P=0.296). According to the logistic regression, the survival rate in the group operated on with the classical surgical method was 0.27 times higher than that in the patients operated on with the new method. Conclusion: Permanent complete AV block is a critical complication after AVR surgery. A lower PPM requirement and higher survival in patients operated on with the new method was the main finding of this study. New techniques with lower PPM requirements may be suitable for cardiac surgery.

5.
Mol Cell Biochem ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37976000

RESUMO

Caspases are a family of cysteine proteases, and the key factors behind the cellular events which occur during apoptosis and inflammation. However, increasing evidence shows the non-conventional pro-survival action of apoptotic caspases in crucial processes. These cellular events include cell proliferation, differentiation, and migration, which may appear in the form of metastasis, and chemotherapy resistance in cancerous situations. Therefore, there should be a precise and strict control of caspases activity, perhaps through maintaining the threshold below the required levels for apoptosis. Thus, understanding the regulators of caspase activities that render apoptotic caspases as non-apoptotic is of paramount importance both mechanistically and clinically. Furthermore, the functions of apoptotic caspases are affected by numerous post-translational modifications. In the present mini-review, we highlight the various mechanisms that directly impact caspases with respect to their anti- or non-apoptotic functions. In this regard, post-translational modifications (PTMs), isoforms, subcellular localization, transient activity, substrate availability, substrate selection, and interaction-mediated regulations are discussed.

6.
J Cardiovasc Thorac Res ; 15(2): 68-72, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654821

RESUMO

Three-dimensional (3D) myocardial tissues for studying human heart biology, physiology and pharmacology have recently received lots of attention. Organoids as 3D mini-organs are created from multiple cell types (i.e. induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs)) with other supporting co-cultured cells such as endothelial cells or fibroblasts. Cardiac organoid culture technologies are bringing about significant advances in organ research and allows for the establishment of tissue regeneration and disease modeling. The present review provides an overview of the recent advances in human cardiac organoid platforms in disease biology and for cardiovascular regenerative medicine.

7.
J Cell Commun Signal ; 17(3): 939-955, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37040028

RESUMO

Autophagy, a critical catabolic process for cell survival against different types of stress, has a role in the differentiation of various cells, such as cardiomyocytes. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is an energy-sensing protein kinase involved in the regulation of autophagy. In addition to its direct role in regulating autophagy, AMPK can also influence other cellular processes by regulating mitochondrial function, posttranslational acetylation, cardiomyocyte metabolism, mitochondrial autophagy, endoplasmic reticulum stress, and apoptosis. As AMPK is involved in the control of various cellular processes, it can influence the health and survival of cardiomyocytes. This study investigated the effects of an AMPK inducer (Metformin) and an autophagy inhibitor (Hydroxychloroquine) on the differentiation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). The results showed that autophagy was upregulated during cardiac differentiation. Furthermore, AMPK activation increased the expression of CM-specific markers in hPSC-CMs. Additionally, autophagy inhibition impaired cardiomyocyte differentiation by targeting autophagosome-lysosome fusion. These results indicate the significance of autophagy in cardiomyocyte differentiation. In conclusion, AMPK might be a promising target for the regulation of cardiomyocyte generation by in vitro differentiation of pluripotent stem cells.

8.
J Cell Biochem ; 124(3): 446-458, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791227

RESUMO

Conditioned media (CM) from various cell types contain significant levels of paracrine factors. Recently, therapeutic properties of CM derived from stem cells have been revealed. Based on the fact that heart cancer is extremely rarely, we hypothesized that the CM obtained from human pluripotent stem cell-derived cardiomyocytes might inhibit cancer cell growth and survival. To this end, lung cancer cell line A549 along with human foreskin fibroblasts (HFF) were treated with serial concentrations of cardiomyocyte CM (CCM) or fibroblast CM (FCM). We found that CCM markedly reduced the viability of lung cancer cells, while FCM did not compromise the viability of neither cancer cells nor HFF cells. Furthermore, we determined an optimized CCM concentration, 30 mg/mL, at which the growth, clonogenicity, and migration of A549 and Calu6 lung cancer cell lines were substantially impaired, whereas FCM did not influence these properties. Moreover, lung cancer cells exhibited cell cycle regulation upon treatment with CCM and the rate of apoptosis was markedly increased by cardiomyocyte CM in both lung cancer cell lines tested. Finally, in response to CCM treatment, A549 and Calu6 cells expressed lower levels of antiapoptotic and stemness genes, but higher levels of proapoptotic genes. In conclusion, this study provides cellular and molecular evidence for the antitumor ability of secretome obtained from stem cell-derived cardiomyocytes.


Assuntos
Neoplasias Pulmonares , Células-Tronco Pluripotentes , Humanos , Miócitos Cardíacos/metabolismo , Meios de Cultivo Condicionados/farmacologia , Pulmão/patologia , Neoplasias Pulmonares/metabolismo
9.
ACS Biomater Sci Eng ; 8(5): 2040-2052, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35468288

RESUMO

Despite the numerous advantages of PDMS-based substrates in various biomedical applications, they are limited by their highly hydrophobic surface that does not optimally interact with cells for attachment and growth. Hence, the lack of lengthy and straightforward procedures for high-density cell production on the PDMS-based substrate is one of the significant challenges in cell production in the cell therapy field. In this study, we found that the PDMS substrate coated with a combination of polydopamine (PDA) and laminin-511 E8 fragments (PDA + LME8-coated PDMS) can support human-induced pluripotent stem cell (hiPSC) attachment and growth for the long term and satisfy their demands of differentiation into cardiomyocytes (iCMs). Compared with prior studies, the density of hiPSCs and their adhesion time on the PDMS surface were increased during iCM production. Although the differentiated iCMs beat and produce mechanical forces, which disturb cellular attachments, the iCMs on the PDA + LME8-coated PDMS substrate showed dramatically better attachment than the control condition. Further, the substrate required less manipulation by enabling one-step seeding throughout the process in iCM formation from hiPSCs under animal-free conditions. In light of the results achieved, the PDA + LME8-coated PDMS substrate will be an up-and-coming tool for cardiomyocyte production for cell therapy and tissue engineering, microfluidics, and organ-on-chip platforms.


Assuntos
Células-Tronco Pluripotentes Induzidas , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Matriz Extracelular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos
10.
Front Cardiovasc Med ; 9: 839862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463789

RESUMO

Cardiomyopathies are a group of common heart disorders that affect numerous people worldwide. Left ventricular non-compaction (LVNC) is a structural disorder of the ventricular wall, categorized as a type of cardiomyopathy that mostly caused by genetic disorders. Genetic variations are underlying causes of developmental deformation of the heart wall and the resultant contractile insufficiency. Here, we investigated a family with several affected members exhibiting LVNC phenotype. By whole-exome sequencing (WES) of three affected members, we identified a novel heterozygous missense variant (c.1963C>A:p.Leu655Met) in the gene encoding myosin heavy chain 7 (MYH7). This gene is evolutionary conserved among different organisms. We identified MYH7 as a highly enriched myosin, compared to other types of myosin heavy chains, in skeletal and cardiac muscles. Furthermore, MYH7 was among a few classes of MYH in mouse heart that highly expresses from early embryonic to adult stages. In silico predictions showed an altered actin-myosin binding, resulting in weaker binding energy that can cause LVNC. Moreover, CRISPR/Cas9 mediated MYH7 knockout in zebrafish caused impaired cardiovascular development. Altogether, these findings provide the first evidence for involvement of p.Leu655Met missense variant in the incidence of LVNC, most probably through actin-myosin binding defects during ventricular wall morphogenesis.

11.
Cell J ; 23(3): 273-287, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34308570

RESUMO

OBJECTIVE: Systemic sclerosis (SSc) is a connective tissue disease associated with vascular damage and multi organ fibrotic changes with unknown pathogenesis. Most SSc patients suffer from defective angiogenesis/vasculogenesis and cardiac conditions leading to high mortality rates. We aimed to investigate the cardiovascular phenotype of SSc by cardiogenic differentiation of SSc induced pluripotent stem cells (iPSC). MATERIALS AND METHODS: In this experimental study, we generated iPSC from two diffuse SSc patients, followed by successful differentiation into endothelial cells (ECs) and cardiomyocytes (CMs). RESULTS: SSc-derived EC (SSc-EC) expressed KDR, a nearly EC marker, similar to healthy control-EC (C1-EC). After sorting and culturing KDR+ cells, the resulting EC expressed CD31, a late endothelial marker, but vascular endothelial (VE)-cadherin expression markedly dropped resulting in a functional defect as reflected in tube formation failure of SSc-EC. Interestingly, upregulation of SNAI1 (snail family transcriptional repressor 1) was observed in SSc-EC which might underlie VE-cadherin downregulation. Furthermore, SSc-derived CM (SSc-CM) successfully expressed cardiacspecific markers including ion channels, resulting in normal physiological behavior and responsiveness to cardioactive drugs. CONCLUSION: This study provides an insight into impaired angiogenesis observed in SSc patients by evaluating in vitro cardiovascular differentiation of SSc iPSC.

12.
J Cardiovasc Thorac Res ; 13(2): 146-155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326969

RESUMO

Introduction: Gender-specific phenotypes of the heart were reported with respect to both physiology and pathology. While most differences were associated with the sex hormones, differential expression of genes received special attention, particularly X-Y chromosomes' genes. Methods: Here, we compared cardiogenesis by gene expression analysis of lineage specific markers and X-Y chromosomes' genes, during in vitro differentiation of XY and XX human embryonic stem cells (hESC), in a hormone-free setup. Results: Downregulation of pluripotency marker (NANOG) and upregulation of cardiac mesoderm and progenitor markers (GATA4, TBX5, NKX2.5, ISL1) was remained temporally similar in differentiating XY and XX hESCs. Isoproterenol treatment of XY and XX hESC-derived cardiomyocytes (hESCCM) induced hypertrophy in a sex-specific manner, with female cardiomyocytes showing response at higher isoproterenol concentration and a later time point of differentiation. Interestingly, KDM5C as an X-linked gene, was markedly upregulated in both hypertrophied male and female cardiomyocytes. Conclusion: Collectively, our results indicated a temporally identical cardiogenesis, but more susceptibility of XY hESC-CM to hypertrophic stimulus in a hormone-free condition.

14.
Angiogenesis ; 24(3): 657-676, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33742265

RESUMO

Localized stimulation of angiogenesis is an attractive strategy to improve the repair of ischemic or injured tissues. Several microRNAs (miRNAs) such as miRNA-92a (miR-92a) have been reported to negatively regulate angiogenesis in ischemic disease. To exploit the clinical potential of miR-92a inhibitors, safe and efficient delivery needs to be established. Here, we used deoxycholic acid-modified polyethylenimine polymeric conjugates (PEI-DA) to deliver a locked nucleic acid (LNA)-based miR-92a inhibitor (LNA-92a) in vitro and in vivo. The positively charged PEI-DA conjugates condense the negatively charged inhibitors into nano-sized polyplexes (135 ± 7.2 nm) with a positive net charge (34.2 ± 10.6 mV). Similar to the 25 kDa-branched PEI (bPEI25) and Lipofectamine RNAiMAX, human umbilical vein endothelial cells (HUVECs) significantly internalized PEI-DA/LNA-92a polyplexes without any obvious cytotoxicity. Down-regulation of miR-92a following the polyplex-mediated delivery of LNA-92a led to a substantial increase in the integrin subunit alpha 5 (ITGA5), the sirtuin-1 (SIRT1) and Krüppel-like factors (KLF) KLF2/4 expression, formation of capillary-like structures by HUVECs, and migration rate of HUVECs in vitro. Furthermore, PEI-DA/LNA-92a resulted in significantly enhanced capillary density in a chicken chorioallantoic membrane (CAM) model. Localized angiogenesis was substantially induced in the subcutaneous tissues of mice by sustained release of PEI-DA/LNA-92a polyplexes from an in situ forming, biodegradable hydrogel based on clickable poly(ethylene glycol) (PEG) macromers. Our results indicate that PEI-DA conjugates efficiently deliver LNA-92a to improve angiogenesis. Localized delivery of RNA interference (RNAi)-based therapeutics via hydrogel-laden PEI-DA polyplex nanoparticles appears to be a safe and effective approach for different therapeutic targets.


Assuntos
Sistemas de Liberação de Medicamentos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hidrogéis/farmacologia , MicroRNAs/antagonistas & inibidores , Nanopartículas/uso terapêutico , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Embrião de Galinha , Feminino , Humanos , Hidrogéis/química , Camundongos , MicroRNAs/metabolismo , Nanopartículas/química
15.
BMC Med Imaging ; 21(1): 37, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632145

RESUMO

BACKGROUND: Intraoperative coronary angiography can tremendously reduce early coronary bypass graft failures. Fluorescent cardiac imaging provides an advanced method for intraoperative observation and real-time quantitation of blood flow with high resolution. METHODS: We devised a system comprised of an LED light source, special filters, lenses and a detector for preclinical coronary artery angiography. The optical setup was implemented by using two achromatic doublet lenses, two positive meniscus lenses, a band-pass filter, a pinhole and a CCD sensor. The setup was optimized by Zemax software. Optical design was further challenged to obtain more parallel light beams, less diffusion and higher resolutions to levels as small as arterioles. Ex vivo rat hearts were prepared and coronary arteries were retrogradely perfused by indocyanine green (ICG). Video angiography was employed to assess blood flow and plot time-dependent fluorescence intensity curve (TIC). Quantitation of blood flow was performed by calculating either the gradient of TIC or area under curve. The correlation between blood flow and each calculated parameters was assessed and used to evaluate the quality of flow. RESULTS: High-resolution images of flow in coronary arteries were obtained as precise as 62 µm vessel diameter, by our custom-made ICG angiography system. The gradient of TIC was 3.4-6.3 s-1, while the area under curve indicated 712-1282 s values which ultimately gained correlation coefficients of 0.9938 and 0.9951 with relative blood flow, respectively. CONCLUSION: The present ICG angiography system may facilitate evaluation of blood flow in animal studies of myocardial infarction and coronary artery grafts intraoperatively.


Assuntos
Angiografia Coronária/instrumentação , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Angiofluoresceinografia/instrumentação , Animais , Angiografia Coronária/métodos , Circulação Coronária , Humanos , Cuidados Pré-Operatórios/instrumentação , Ratos
16.
Mater Sci Eng C Mater Biol Appl ; 121: 111836, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579474

RESUMO

To some extent, cell therapy for myocardial infarction (MI) has supported the idea of cardiac repair; however, further optimizations are inevitable. Combined approaches that comprise suitable cell sources and supporting molecules considerably improved its effect. Here, we devised a strategy of simultaneous transplantation of human cardiac progenitor cells (CPCs) and an optimized oxygen generating microparticles (MPs) embedded in fibrin hydrogel, which was injected into a left anterior descending artery (LAD) ligating-based rat model of acute myocardial infarction (AMI). Functional parameters of the heart, particularly left ventricular systolic function, markedly improved and reached pre-AMI levels. This functional restoration was well correlated with substantially lower fibrotic tissue formation and greater vascular density in the infarct area. Our novel approach promoted CPCs retention and differentiation into cardiovascular lineages. We propose this novel co-transplantation strategy for more efficient cell therapy of AMI which may function by providing an oxygen-rich microenvironment, and thus regulate cell survival and differentiation.


Assuntos
Infarto do Miocárdio , Oxigênio , Animais , Terapia Baseada em Transplante de Células e Tecidos , Infarto do Miocárdio/terapia , Ratos , Células-Tronco , Função Ventricular Esquerda
17.
ACS Appl Bio Mater ; 4(6): 4849-4861, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007034

RESUMO

Myocardial infarction (MI) irreversibly injures the heart tissue. Cardiovascular tissue engineering has been developed as a promising therapeutic approach for post-MI repair. Previously, we discovered the ability of a polypyrrole (PPy)-incorporated cardiogel (CG) for improvement of maturity and functional synchrony of rat neonatal cardiomyocytes. Here, we used the cross-linked form of PPy-incorporated CG (CG-PPy), in order to improve electromechanical properties of scaffold, for application in cardiac progenitor cell (CPC) transplantation on post-MI rat hearts. Improved mechanical property and electrical conductivity (sixfold) were evident in the cross-linked CG-PPy (P1) compared to cross-linked CG (C1) scaffolds. Transplantation of CPC-loaded P1 (P1-CPC) resulted in substantial improvement of cardiac functional properties. Furthermore, lower fibrotic tissue and higher CPC retention were observed. The grafted cells showed cardiomyocyte characteristics when stained with human cardiac troponin T and connexin43 antibodies, while neovessel formation was similarly prominent. These findings highlight the therapeutic promise of the P1 scaffold as a CPC carrier for functional restoration of the heart post-MI.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Embrionárias Humanas , Isquemia Miocárdica/terapia , Miócitos Cardíacos , Polímeros/administração & dosagem , Pirróis/administração & dosagem , Animais , Animais Recém-Nascidos , Células Cultivadas , Conexina 43/metabolismo , Géis , Humanos , Masculino , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ovinos , Engenharia Tecidual/métodos , Alicerces Teciduais , Troponina T/metabolismo , Função Ventricular Esquerda
18.
Cell Mol Life Sci ; 78(2): 469-495, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32710154

RESUMO

Stem cells and their derivatives are novel pharmaceutics that have the potential for use as tissue replacement therapies. However, the heterogeneous characteristics of stem cell cultures have hindered their biomedical applications. In theory and practice, when cell type-specific or stage-specific cell surface proteins are targeted by unique antibodies, they become highly efficient in detecting and isolating specific cell populations. There is a growing demand to identify reliable and actionable cell surface markers that facilitate purification of particular cell types at specific developmental stages for use in research and clinical applications. The identification of these markers as very important members of plasma membrane proteins, ion channels, transporters, and signaling molecules has directly benefited from proteomics and tools for proteomics-derived data analyses. Here, we review the methodologies that have played a role in the discovery of cell surface markers and introduce cutting edge single cell proteomics as an advanced tool. We also discuss currently available specific cell surface markers for stem cells and their lineages, with emphasis on the nervous system, heart, pancreas, and liver. The remaining gaps that pertain to the discovery of these markers and how single cell proteomics and identification of surface markers associated with the progenitor stages of certain terminally differentiated cells may pave the way for their use in regenerative medicine are also discussed.


Assuntos
Proteínas de Membrana/análise , Proteômica/métodos , Células-Tronco/citologia , Animais , Diferenciação Celular , Humanos , Espectrometria de Massas/métodos , Análise de Célula Única/métodos , Transplante de Células-Tronco , Células-Tronco/química
19.
Stem Cell Rev Rep ; 17(2): 539-561, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33245492

RESUMO

Autophagy is responsible for degradation of non-essential or damaged cellular constituents and damaged organelles. The autophagy pathway maintains efficient cellular metabolism and reduces cellular stress by removing additional and pathogenic components. Dysfunctional autophagy underlies several diseases. Thus, several research groups have worked toward elucidating key steps in this pathway. Autophagy can be studied by animal modeling, chemical modulators, and in vitro disease modeling with induced pluripotent stem cells (iPSC) as a loss-of-function platform. The introduction of iPSC technology, which has the capability to maintain the genetic background, has facilitated in vitro modeling of some diseases. Furthermore, iPSC technology can be used as a platform to study defective cellular and molecular pathways during development and unravel novel steps in signaling pathways of health and disease. Different studies have used iPSC technology to explore the role of autophagy in disease pathogenesis which could not have been addressed by animal modeling or chemical inducers/inhibitors. In this review, we discuss iPSC models of autophagy-associated disorders where the disease is caused due to mutations in autophagy-related genes. We classified this group as "primary autophagy induced defects (PAID)". There are iPSC models of diseases in which the primary cause is not dysfunctional autophagy, but autophagy is impaired secondary to disease phenotypes. We call this group "secondary autophagy induced defects (SAID)" and discuss them. Graphical abstract.


Assuntos
Autofagia , Células-Tronco Pluripotentes Induzidas , Autofagia/genética , Doença , Humanos
20.
J Tissue Eng Regen Med ; 14(12): 1939-1944, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32885899

RESUMO

Cell therapy has become a novel promising approach for improvement of cardiac functional capacity in the instances of ventricular remodeling and fibrosis caused by episodes of coronary artery occlusion and hypoxia. The challenge toward enhancing cell engraftment as well as formation of functional tissue, however, necessitated combinatorial approaches. Here, we complemented human embryonic stem cell-derived cardiac progenitor cell (hESC-CPC) therapy by heparin-conjugated, vascular endothelial growth factor (VEGF)-loaded fibrin hydrogel as VEGF delivery system. Transplantation of these cardiac committed cells along with sustained VEGF release could surpass the cardiac repair effects of each constituent alone in a rat model of acute myocardial infarction. The histological sections of rat hearts revealed improved vascularization as well as inclusion of hESC-CPC-derived cardiomyocytes, endothelial, and smooth muscle cells in host myocardium. Thus, co-transplantation of hESC-CPC and proangiogenic factor by a suitable delivery rate may resolve the shortcomings of conventional cell therapy.


Assuntos
Infarto do Miocárdio/terapia , Miocárdio/patologia , Transplante de Células-Tronco , Células-Tronco/citologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Preparações de Ação Retardada , Células-Tronco Embrionárias Humanas/citologia , Humanos , Infarto do Miocárdio/patologia , Células-Tronco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA