Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172298, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615778

RESUMO

A 30-month pilot study was conducted to evaluate the potential of in-situ metal(loid) removal through biostimulation of sulfate-reducing processes. The study took place at an industrial site in Flanders, Belgium, known for metal(loid) contamination in soil and groundwater. Biostimulation involved two incorporations of an organic substrate (emulsified vegetable oil) as electron donor and potassium bicarbonate to raise the pH of the groundwater by 1-1.5 units. The study focused on the most impacted permeable fine sand aquifer (8-9 m below groundwater level) confined by layers of non-permeable clay. The fine sands exhibited initially oxic conditions (50-200 mV), an acidic pH of 4.5 and sulfate concentrations ranging from 600 to 800 mg/L. At the central monitoring well, anoxic conditions (-200 to -400 mV) and a pH of 5.9 established shortly after the second substrate and reagent injection. Over the course of 12 months, there was a significant decrease in the concentration of arsenic (from 2500 to 12 µg/L), nickel (from 360 to <2 µg/L), zinc (from 78,000 to <2 µg/L), and sulfate (from 930 to 450 mg/L). Low levels of metal(loid)s were still present after 34 months (end of study). Mineralogical analysis indicated that the precipitates formed were amorphous in nature. Evidence for biologically driven metal(loid) precipitation was provided by compound specific stable isotope analysis of sulfate. In addition, changes in microbial populations were assessed using next-generation sequencing, revealing stimulation of native sulfate-reducing bacteria. These results highlight the potential of biostimulation for long-term in situ metal(loid) plume treatment/containment.


Assuntos
Sulfatos , Poluentes Químicos da Água , Bélgica , Sulfatos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Água Subterrânea/química , Metais/química , Metais/análise , Poluentes do Solo/análise , Projetos Piloto , Biodegradação Ambiental , Precipitação Química
2.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628840

RESUMO

To develop novel mineral-filled composites and assess their enhanced properties (stiffness, a good balance between mechanical strength and impact resistance, greater temperature stability), a high-impact polypropylene copolymer (PPc) matrix containing an elastomeric discrete phase was melt mixed with natural CaSO4 ß-anhydrite II (AII) produced from gypsum rocks. First, in a prior investigation, the PPc composites filled with AII (without any modification) displayed enhanced stiffness, which is correlated with the relative content of the filler. The tensile and impact strengths dramatically decreased, especially at high filling (40 wt.%). Therefore, two key methods were considered to tune up their properties: (a) the ionomeric modification of PPc composites by reactive extrusion (REx) with zinc diacrylate (ZA), and (b) the melt mixing of PPc with AII surface modified with ethylenebis(stearamide) (EBS), which is a multifunctional processing/dispersant additive. The properties of composites produced with twin-screw extruders (TSEs) were deeply assessed in terms of morphology, mechanical, and thermal performance, including characterizations under dynamic mechanical solicitations at low and high temperatures. Two categories of products with distinct properties are obtained. The ionomeric modification by Rex (evaluated by FTIR) led to composites characterized by remarkable thermal stability, a higher temperature of crystallization, stronger interfacial interactions, and therefore noticeable mechanical properties (high tensile strength (i.e., 28 MPa), increased stiffness, moderate (3.3 kJ/m2) to good (5.0 kJ/m2) impact resistance) as well as advanced heat deflection temperature (HDT). On the other hand, the surface modification of AII with EBS facilitated the dispersion and debonding of microparticles, leading to composites revealing improved ductility (strain at break from 50% to 260%) and enhanced impact properties (4.3-5.3 kJ/m2), even at high filling. Characterized by notable mechanical and thermal performances, high whiteness, and a good processing ability, these new PPc-AII composites may be tailored to meet the requirements of end-use applications, ranging from packaging to automotive components.


Assuntos
Micropartículas Derivadas de Células , Polipropilenos , Parafusos Ósseos , Sulfato de Cálcio , Cristalização , Polímeros
3.
Polymers (Basel) ; 15(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36850083

RESUMO

Polypropylene (PP) is one of the most versatile polymers widely used in packaging, textiles, automotive, and electrical applications. Melt blending of PP with micro- and/or nano-fillers is a common approach for obtaining specific end-use characteristics and major enhancements of properties. The study aims to develop high-performance composites by filling PP with CaSO4 ß-anhydrite II (AII) issued from natural gypsum. The effects of the addition of up to 40 wt.% AII into PP matrix have been deeply evaluated in terms of morphology, mechanical and thermal properties. The PP-AII composites (without any modifier) as produced with internal mixers showed enhanced thermal stability and stiffness. At high filler loadings (40% AII), there was a significant decrease in tensile strength and impact resistance; therefore, custom formulations with special reactive modifiers/compatibilizers (PP functionalized/grafted with maleic anhydride (PP-g-MA) and zinc diacrylate (ZnDA)) were developed. The study revealed that the addition of only 2% ZnDA (able to induce ionomeric character) leads to PP-AII composites characterized by improved kinetics of crystallization, remarkable thermal stability, and enhanced mechanical properties, i.e., high tensile strength, rigidity, and even rise in impact resistance. The formation of Zn ionomers and dynamic ionic crosslinks, finer dispersion of AII microparticles, and better compatibility within the polyolefinic matrix allow us to explain the recorded increase in properties. Interestingly, the PP-AII composites also exhibited significant improvements in the elastic behavior under dynamic mechanical stress and of the heat deflection temperature (HDT), thus paving the way for engineering applications. Larger experimental trials have been conducted to produce the most promising composite materials by reactive extrusion (REx) on twin-screw extruders, while evaluating their performances through various methods of analysis and processing.

4.
Polymers (Basel) ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432967

RESUMO

Concerning new polylactide (PLA) applications, the study investigates the toughening of PLA-CaSO4 ß-anhydrite II (AII) composites with bio-sourced tributyl citrate (TBC). The effects of 5-20 wt.% TBC were evaluated in terms of morphology, mechanical and thermal properties, focusing on the enhancement of PLA crystallization and modification of glass transition temperature (Tg). Due to the strong plasticizing effects of TBC (even at 10%), the plasticized composites are characterized by significant decrease of Tg and rigidity, increase of ductility and impact resistance. Correlated with the amounts of plasticizer, a dramatic drop in melt viscosity is also revealed. Therefore, for applications requiring increased viscosity and enhanced melt strength (extrusion, thermoforming), the reactive modification, with up to 1% epoxy functional styrene-acrylic oligomers, was explored to enhance their rheology. Moreover, larger quantities of products were obtained by reactive extrusion (REX) and characterized to evidence their lower stiffness, enhanced ductility, and toughness. In current prospects, selected samples were tested for the extrusion of tubes (straws) and films. The migration of plasticizer was not noted (at 10% TBC), whereas the mechanical and thermal characterizations of films after two years of aging evidenced a surprising preservation of properties.

5.
Polymers (Basel) ; 14(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745936

RESUMO

The melt-mixing of polylactide (PLA) with micro- and/or nanofillers is a key method used to obtain specific end-use characteristics and improvements of properties. So-called "insoluble" CaSO4 (CS) ß-anhydrite II (AII) is a mineral filler recently considered for the industry of polymer composites. First, the study proves that AII made from natural gypsum by a specifically thermal treatment is highly stable compared to other CS forms. Then, PLAs of different isomer purity and molecular weights (for injection molding (IM) and extrusion), have been used to produce "green" composites filled with 20-40 wt.% AII. The composites show good thermal and mechanical properties, accounting for the excellent filler dispersion and stability. The stiffness of composites increases with the amount of filler, whereas their tensile strength is found to be dependent on PLA molecular weights. Interestingly, the impact resistance is improved by adding 20% AII into all investigated PLAs. Due to advanced kinetics of crystallization ascribed to the effects of AII and use of a PLA grade of high L-lactic acid isomer purity, the composites show after IM an impressive degree of crystallinity (DC), i.e., as high as 50%, while their Vicat softening temperature is remarkably increased to 160 °C, which are thermal properties of great interest for applications requiring elevated rigidity and heat resistance.

6.
Materials (Basel) ; 14(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34576386

RESUMO

In the category of biopolymers, polylactide or polylactic acid (PLA) is one of the most promising candidates considered for future developments, as it is not only biodegradable under industrial composting conditions, but it is produced from renewable natural resources. The modification of PLA through the addition of nanofillers is considered as a modern approach to improve its main characteristic features (mechanical, thermal, barrier, etc.) and to obtain specific end-use properties. Iron oxide nanoparticles (NPs) of low dimension (10-20 nm) such as magnetite (Fe3O4), exhibit strong magnetization in magnetic field, are biocompatible and show low toxicity, and can be considered in the production of polymer nanocomposites requiring superparamagnetic properties. Accordingly, PLA was mixed by melt-compounding with 4-16 wt.% magnetite NPs. Surface treatment of NPs with a reactive polymethylhydrogensiloxane (MHX) was investigated to render the nanofiller water repellent, less sensitive to moisture and to reduce the catalytic effects at high temperature of iron (from magnetite) on PLA macromolecular chains. The characterization of nanocomposites was focused on the differences of the rheology and morphology, modification, and improvements in the thermal properties using surface treated NPs, while the superparamagnetic behavior was confirmed by VSM (vibrating sample magnetometer) measurements. The PLA-magnetite nanocomposites had strong magnetization properties at low magnetic field (values close to 70% of Mmax at H = 0.2 T), while the maximum magnetic signal (Mmax) was mainly determined by the loading of the nanofiller, without any significant differences linked to the surface treatment of MNPs. These bionanocomposites showing superparamagnetic properties, close to zero magnetic remanence, and coercivity, can be further produced at a larger scale by melt-compounding and can be designed for special end-use applications, going from biomedical to technical areas.

7.
Molecules ; 26(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918508

RESUMO

Due to the added value conferred by zinc oxide (ZnO) nanofiller, e.g., UV protection, antibacterial action, gas-barrier properties, poly(lactic acid) (PLA)-ZnO nanocomposites show increased interest for utilization as films, textile fibers, and injection molding items. The study highlights the beneficial effects of premixing ZnO in PLA under given conditions and its use as masterbatch (MB), a very promising alternative manufacturing technique. This approach allows reducing the residence time at high processing temperature of the thermo-sensitive PLA matrix in contact of ZnO nanoparticles known for their aptitude to promote degradation effects onto the polyester chains. Various PLA-ZnO MBs containing high contents of silane-treated ZnO nanoparticles (up to 40 wt.% nanofiller specifically treated with triethoxycaprylylsilane) were produced by melt-compounding using twin-screw extruders. Subsequently, the selected MBs were melt blended with pristine PLA to produce nanocomposite films containing 1-3 wt.% ZnO. By comparison to the more traditional multi-step process, the MB approach allowed the production of nanocomposites (films) having improved processing and enhanced properties: PLA chains displaying higher molecular weights, improved thermal stability, fine nanofiller distribution, and thermo-mechanical characteristic features, while the UV protection was confirmed by UV-vis spectroscopy measurements. The MB alternative is viewed as a promising flexible technique able to open new perspectives to produce more competitive multifunctional PLA-ZnO nanocomposites.

8.
RSC Adv ; 9(29): 16819-16830, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516372

RESUMO

In this paper, a 4-ethylphenol-para-phenylenediamine (4EP-pPDA) benzoxazine has been applied and cured on previously anodized AA2024-T3 substrates. The porous surface oxide layers obtained from sulfo-tartaric anodizing appeared to be highly impregnated by the benzoxazine resin, sealing the anodic films. Through rheological, morphological and chemical characterization, the curing process has been identified to be the key step for the impregnation to occur, related to the low viscosity of the 4EP-pPDA benzoxazine attained during thermal curing. Moreover, the typical surface porosity of the anodic layer reappeared after curing, offering a good anchoring to possible top coats. Finally, high and enduring barrier properties of this hybrid organic-inorganic layer have been highlighted through Electrochemical Impedance Spectroscopy (EIS) and correlated with recent results obtained by Molecular Dynamics Simulations (MDS). These barrier properties appeared to be strongly influenced by the curing process parameters, as has been assessed using alternative curing cycles limiting their duration and lowering the curing temperature. Consequently, adapting the curing process enables the optimization of the barrier properties of the system while respecting the dependence of the mechanical properties of the AA2024-T3 substrate on thermal treatment at high temperatures.

9.
ACS Appl Mater Interfaces ; 10(35): 29933-29942, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30092638

RESUMO

In recent years, shape-memory polymers (SMPs) have gained a key position in the realm of actuating applications from daily life products to biomedical and aeronautic devices. Most of these SMPs rely mainly on shape changes upon direct heat exposure or after stimulus conversion (e.g., magnetic field and light) to heat, but this concept remains significantly limited when both remote control and fine actuation are demanded. In the present study, we propose to design plasmonic silver nanoparticles (AgNPs) grafted onto cellulose nanocrystals (CNCs) as an efficient plasmonic system for fast and remote actuation. Such CNC- g-AgNPs "nanorod-like" structures thereby allowed for a long-distance and strong coupling plasmonic effect between the AgNPs along the CNC axis, thus ensuring a fast photothermal shape-recovery effect upon IR light illumination. To demonstrate the fast and remote actuation promoted by these structures, we incorporated them at low loading (1 wt %) into poly(ε-caprolactone) (PCL)-based networks with shape-memory properties. These polymer matrix networks were practically designed from biocompatible PCL oligomers end-functionalized with maleimide and furan moieties in the melt on the basis of thermoreversible Diels-Alder reactions. The as-produced materials could find application in the realm of soft robotics for remote object transportation or as smart biomaterials such as self-tightening knots with antibacterial properties related to the presence of the AgNPs.

10.
Biomacromolecules ; 17(9): 3048-59, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27434410

RESUMO

This article reports on the successful preparation and characterization of cellulose nanocrystals (CNCs) surface-modified with polylactide (PLA) and poly(butylene succinate) (PBS) binary mixed homopolymer brushes. Their synthesis was designed as a three-step procedure combining polyester synthesis and surface-modification of CNCs with simultaneous polyester grafting via a heterogeneous copper(I)-catalyzed azide-alkyne cycloaddition reaction. For comparison, single homopolymer brushes tethered to CNCs (PLLA-g-CNC and PBSBDEMPAM-g-CNC) were obtained applying the same procedure. The hairy nanoparticles were characterized in terms of chemical composition and thermal properties. Spectroscopic analyses suggested "rippled" microphase separation of both immiscible homopolyesters in the mixed brushes, while others showed impeded homopolyester crystallization after surface-grafting. A synergistic relationship between the polyesters and CNCs was also suggested, i.e., the polyester grafting increases the CNC thermal resistance, while CNC presence imparts char formation. The as-obtained binary homopolymer brushes tethered to nanoparticles makes these surface-modified cellulosic nanomaterials attractive as compatibilization/reinforcement agents for PLA/PBS blends.


Assuntos
Celulose/química , Nanopartículas/química , Nanoestruturas/química , Poliésteres/química , Catálise , Temperatura
11.
Biomacromolecules ; 12(5): 1762-71, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21466242

RESUMO

Metallic oxides have been successfully investigated for the recycling of polylactide (PLA) via catalyzed unzipping depolymerization allowing for the selective recovery of lactide monomer. In this contribution, a metallic oxide nanofiller, that is, ZnO, has been dispersed into PLA without detrimental polyester degradation yielding PLA/ZnO nanocomposites directly suitable for producing films and fibers. The nanocomposites were produced by melt-blending two different grades of PLA with untreated ZnO and surface-treated ZnO nanoparticles. The surface treatment by silanization proved to be necessary for avoiding the decrease in molecular weight and thermal and mechanical properties of the filled polyester matrix. Silane-treated ZnO nanoparticles yielded nanocomposites characterized by good mechanical performances (tensile strength in the interval from 55 to 65 MPa), improved thermal stability, and fine nanofiller dispersion, as evidenced by microscopy investigations. PLA/ZnO nanocomposites were further extruded in films and fibers, respectively, characterized by anti-UV and antibacterial properties.


Assuntos
Nanoestruturas , Poliésteres/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Poliésteres/farmacologia , Espectrofotometria Ultravioleta , Staphylococcus aureus/efeitos dos fármacos , Termogravimetria , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA