Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37027757

RESUMO

Faithful measurement of perceptual quality is of significant importance to various multimedia applications. By fully utilizing reference images, full-reference image quality assessment (FR-IQA) methods usually achieves better prediction performance. On the other hand, no-reference image quality assessment (NR-IQA), also known as blind image quality assessment (BIQA), which does not consider the reference image, makes it a challenging but important task. Previous NR-IQA methods have focused on spatial measures at the expense of information in the available frequency bands. In this paper, we present a multiscale deep blind image quality assessment method (BIQA, M.D.) with spatial optimal-scale filtering analysis. Motivated by the multi-channel behavior of the human visual system and contrast sensitivity function, we decompose an image into a number of spatial frequency bands by multiscale filtering and extract features for mapping an image to its subjective quality score by applying convolutional neural network. Experimental results show that BIQA, M.D. compares well with existing NR-IQA methods and generalizes well across datasets.

2.
IEEE Trans Neural Netw Learn Syst ; 34(11): 9029-9039, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35286266

RESUMO

Optimization algorithms are of great importance to efficiently and effectively train a deep neural network. However, the existing optimization algorithms show unsatisfactory convergence behavior, either slowly converging or not seeking to avoid bad local optima. Learning rate dropout (LRD) is a new gradient descent technique to motivate faster convergence and better generalization. LRD aids the optimizer to actively explore in the parameter space by randomly dropping some learning rates (to 0); at each iteration, only parameters whose learning rate is not 0 are updated. Since LRD reduces the number of parameters to be updated for each iteration, the convergence becomes easier. For parameters that are not updated, their gradients are accumulated (e.g., momentum) by the optimizer for the next update. Accumulating multiple gradients at fixed parameter positions gives the optimizer more energy to escape from the saddle point and bad local optima. Experiments show that LRD is surprisingly effective in accelerating training while preventing overfitting.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36086218

RESUMO

With growing size of resting state fMRI datasets and advances in deep learning methods, there are ever increasing opportunities to leverage progress in deep learning to solve challenging tasks in neuroimaging. In this work, we build upon recent advances in deep metric learning, to learn embeddings of rs-fMRI data, which can then be potentially used for several downstream tasks. We propose an efficient training method for our model and compare our method with other widely used models. Our experimental results indicate that deep metric learning can be used as an additional refinement step to learn representations of fMRI data, that significantly improves performance on downstream modeling tasks.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem
4.
Comput Biol Med ; 140: 105067, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34920364

RESUMO

Despite impressive developments in deep convolutional neural networks for medical imaging, the paradigm of supervised learning requires numerous annotations in training to avoid overfitting. In clinical cases, massive semantic annotations are difficult to acquire where biomedical expert knowledge is required. Moreover, it is common when only a few annotated classes are available. In this study, we proposed a new approach to few-shot medical image segmentation, which enables a segmentation model to quickly generalize to an unseen class with few training images. We constructed a few-shot image segmentation mechanism using a deep convolutional network trained episodically. Motivated by the spatial consistency and regularity in medical images, we developed an efficient global correlation module to model the correlation between a support and query image and incorporate it into the deep network. We enhanced the discrimination ability of the deep embedding scheme to encourage clustering of feature domains belonging to the same class while keeping feature domains of different organs far apart. We experimented using anatomical abdomen images from both CT and MRI modalities.

5.
IEEE Trans Neural Netw Learn Syst ; 32(5): 2090-2104, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32484781

RESUMO

We introduce a new deep detail network architecture with grouped multiscale dilated convolutions to sharpen images contain multiband spectral information. Specifically, our end-to-end network directly fuses low-resolution multispectral and panchromatic inputs to produce high-resolution multispectral results, which is the same goal of the pansharpening in remote sensing. The proposed network architecture is designed by utilizing our domain knowledge and considering the two aims of the pansharpening: spectral and spatial preservations. For spectral preservation, the up-sampled multispectral images are directly added to the output for lossless spectral information propagation. For spatial preservation, we train the proposed network in the high-frequency domain instead of the commonly used image domain. Different from conventional network structures, we remove pooling and batch normalization layers to preserve spatial information and improve generalization to new satellites, respectively. To effectively and efficiently obtain multiscale contextual features at a fine-grained level, we propose a grouped multiscale dilated network structure to enlarge the receptive fields for each network layer. This structure allows the network to capture multiscale representations without increasing the parameter burden and network complexity. These representations are finally utilized to reconstruct the residual images which contain spatial details of PAN. Our trained network is able to generalize different satellite images without the need for parameter tuning. Moreover, our model is a general framework, which can be directly used for other kinds of multiband spectral image sharpening, e.g., hyperspectral image sharpening. Experiments show that our model performs favorably against compared methods in terms of both qualitative and quantitative qualities.

6.
BMC Biomed Eng ; 2: 4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903379

RESUMO

BACKGROUND: CS-MRI (compressed sensing for magnetic resonance imaging) exploits image sparsity properties to reconstruct MRI from very few Fourier k-space measurements. Due to imperfect modelings in the inverse imaging, state-of-the-art CS-MRI methods tend to leave structural reconstruction errors. Compensating such errors in the reconstruction could help further improve the reconstruction quality. RESULTS: In this work, we propose a DECN (deep error correction network) for CS-MRI. The DECN model consists of three parts, which we refer to as modules: a guide, or template, module, an error correction module, and a data fidelity module. Existing CS-MRI algorithms can serve as the template module for guiding the reconstruction. Using this template as a guide, the error correction module learns a CNN (convolutional neural network) to map the k-space data in a way that adjusts for the reconstruction error of the template image. We propose a deep error correction network. Our experimental results show the proposed DECN CS-MRI reconstruction framework can considerably improve upon existing inversion algorithms by supplementing with an error-correcting CNN. CONCLUSIONS: In the proposed a deep error correction framework, any off-the-shelf CS-MRI algorithm can be used as template generation. Then a deep neural network is used to compensate reconstruction errors. The promising experimental results validate the effectiveness and utility of the proposed framework.

7.
IEEE Trans Neural Netw Learn Syst ; 31(12): 5561-5574, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32142457

RESUMO

Area under the receiver operating characteristics curve (AUC) is an important metric for a wide range of machine-learning problems, and scalable methods for optimizing AUC have recently been proposed. However, handling very large data sets remains an open challenge for this problem. This article proposes a novel approach to AUC maximization based on sampling mini-batches of positive/negative instance pairs and computing U-statistics to approximate a global risk minimization problem. The resulting algorithm is simple, fast, and learning-rate free. We show that the number of samples required for good performance is independent of the number of pairs available, which is a quadratic function of the positive and negative instances. Extensive experiments show the practical utility of the proposed method.

8.
IEEE J Biomed Health Inform ; 24(8): 2303-2314, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31905155

RESUMO

The identification of lesion within medical image data is necessary for diagnosis, treatment and prognosis. Segmentation and classification approaches are mainly based on supervised learning with well-paired image-level or voxel-level labels. However, labeling the lesion in medical images is laborious requiring highly specialized knowledge. We propose a medical image synthesis model named abnormal-to-normal translation generative adversarial network (ANT-GAN) to generate a normal-looking medical image based on its abnormal-looking counterpart without the need for paired training data. Unlike typical GANs, whose aim is to generate realistic samples with variations, our more restrictive model aims at producing a normal-looking image corresponding to one containing lesions, and thus requires a special design. Being able to provide a "normal" counterpart to a medical image can provide useful side information for medical imaging tasks like lesion segmentation or classification validated by our experiments. In the other aspect, the ANT-GAN model is also capable of producing highly realistic lesion-containing image corresponding to the healthy one, which shows the potential in data augmentation verified in our experiments.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina não Supervisionado , Encéfalo/diagnóstico por imagem , Humanos
9.
IEEE Trans Med Imaging ; 39(4): 898-909, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31449009

RESUMO

The segmentation of brain tissue in MRI is valuable for extracting brain structure to aid diagnosis, treatment and tracking the progression of different neurologic diseases. Medical image data are volumetric and some neural network models for medical image segmentation have addressed this using a 3D convolutional architecture. However, this volumetric spatial information has not been fully exploited to enhance the representative ability of deep networks, and these networks have not fully addressed the practical issues facing the analysis of multimodal MRI data. In this paper, we propose a spatially-weighted 3D network (SW-3D-UNet) for brain tissue segmentation of single-modality MRI, and extend it using multimodality MRI data. We validate our model on the MRBrainS13 and MALC12 datasets. This unpublished model ranked first on the leaderboard of the MRBrainS13 Challenge.


Assuntos
Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Feminino , Humanos , Masculino
10.
IEEE Trans Neural Netw Learn Syst ; 31(6): 1794-1807, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31329133

RESUMO

Existing deep convolutional neural networks (CNNs) have found major success in image deraining, but at the expense of an enormous number of parameters. This limits their potential applications, e.g., in mobile devices. In this paper, we propose a lightweight pyramid networt (LPNet) for single-image deraining. Instead of designing a complex network structure, we use domain-specific knowledge to simplify the learning process. In particular, we find that by introducing the mature Gaussian-Laplacian image pyramid decomposition technology to the neural network, the learning problem at each pyramid level is greatly simplified and can be handled by a relatively shallow network with few parameters. We adopt recursive and residual network structures to build the proposed LPNet, which has less than 8K parameters while still achieving the state-of-the-art performance on rain removal. We also discuss the potential value of LPNet for other low- and high-level vision tasks.

11.
IEEE Trans Image Process ; 28(12): 6141-6153, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31295112

RESUMO

Compressed sensing (CS) theory can accelerate multi-contrast magnetic resonance imaging (MRI) by sampling fewer measurements within each contrast. However, conventional optimization-based reconstruction models suffer several limitations, including a strict assumption of shared sparse support, time-consuming optimization, and "shallow" models with difficulties in encoding the patterns contained in massive MRI data. In this paper, we propose the first deep learning model for multi-contrast CS-MRI reconstruction. We achieve information sharing through feature sharing units, which significantly reduces the number of model parameters. The feature sharing unit combines with a data fidelity unit to comprise an inference block, which are then cascaded with dense connections, allowing for efficient information transmission across different depths of the network. Experiments on various multi-contrast MRI datasets show that the proposed model outperforms both state-of-the-art single-contrast and multi-contrast MRI methods in accuracy and efficiency. We demonstrate that improved reconstruction quality can bring benefits to subsequent medical image analysis. Furthermore, the robustness of the proposed model to misregistration shows its potential in real MRI applications.


Assuntos
Compressão de Dados/métodos , Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Meios de Contraste , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade
12.
Magn Reson Imaging ; 63: 37-48, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31306732

RESUMO

Compressed sensing (CS) theory assures us that we can accurately reconstruct magnetic resonance images using fewer k-space measurements than the Nyquist sampling rate requires. In traditional CS-MRI inversion methods, the fact that the energy within the Fourier measurement domain is distributed non-uniformly is often neglected during reconstruction. As a result, more densely sampled low frequency information tends to dominate penalization schemes for reconstructing MRI at the expense of high frequency details. In this paper, we propose a new framework for CS-MRI inversion in which we decompose the observed k-space data into "subspaces" via sets of filters in a lossless way, and reconstruct the images in these various spaces individually using off-the-shelf algorithms. We then fuse the results to obtain the final reconstruction. In this way, we are able to focus reconstruction on frequency information within the entire k-space more equally, preserving both high and low frequency details. We demonstrate that the proposed framework is competitive with state-of-the-art methods in CS-MRI in terms of quantitative performance, and often improves an algorithm's results qualitatively compared with its direct application to k-space.


Assuntos
Encéfalo/diagnóstico por imagem , Compressão de Dados/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Análise de Fourier , Humanos , Modelos Estatísticos , Distribuição Normal , Imagens de Fantasmas , Reprodutibilidade dos Testes
13.
Magn Reson Imaging ; 63: 185-192, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31352015

RESUMO

Compressive sensing enables fast magnetic resonance imaging (MRI) reconstruction with undersampled k-space data. However, in most existing MRI reconstruction models, the whole MR image is targeted and reconstructed without taking specific tissue regions into consideration. This may fails to emphasize the reconstruction accuracy on important and region-of-interest (ROI) tissues for diagnosis. In some ROI-based MRI reconstruction models, the ROI mask is extracted by human experts in advance, which is laborious when the MRI datasets are too large. In this paper, we propose a deep neural network architecture for ROI MRI reconstruction called ROIRecNet to improve reconstruction accuracy of the ROI regions in under-sampled MRI. In the model, we obtain the ROI masks by feeding an initially reconstructed MRI from a pre-trained MRI reconstruction network (RecNet) to a pre-trained MRI segmentation network (ROINet). Then we fine-tune the RecNet with a binary weighted ℓ2 loss function using the produced ROI mask. The resulting ROIRecNet can offer more focus on the ROI. We test the model on the MRBrainS13 dataset with different brain tissues being ROIs. The experiment shows the proposed ROIRecNet can significantly improve the reconstruction quality of the region of interest.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Compressão de Dados/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Computadores , Humanos , Modelos Estatísticos
14.
Sci Adv ; 4(5): eaao2929, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29806015

RESUMO

The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 < ML < 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.

15.
IEEE Trans Image Process ; 27(5): 2354-2367, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29470171

RESUMO

This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HSI classification problem from a Bayesian perspective. Then, we adopt a convolutional neural network (CNN) to learn the posterior class distributions using a patch-wise training strategy to better use the spatial information. Next, spatial information is further considered by placing a spatial smoothness prior on the labels. Finally, we iteratively update the CNN parameters using stochastic gradient decent and update the class labels of all pixel vectors using -expansion min-cut-based algorithm. Compared with the other state-of-the-art methods, the classification method achieves better performance on one synthetic data set and two benchmark HSI data sets in a number of experimental settings.

16.
BMC Genomics ; 18(Suppl 2): 105, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28361690

RESUMO

BACKGROUND: Cancer is a complex disease driven by somatic genomic alterations (SGAs) that perturb signaling pathways and consequently cellular function. Identifying patterns of pathway perturbations would provide insights into common disease mechanisms shared among tumors, which is important for guiding treatment and predicting outcome. However, identifying perturbed pathways is challenging, because different tumors can have the same perturbed pathways that are perturbed by different SGAs. Here, we designed novel semantic representations that capture the functional similarity of distinct SGAs perturbing a common pathway in different tumors. Combining this representation with topic modeling would allow us to identify patterns in altered signaling pathways. RESULTS: We represented each gene with a vector of words describing its function, and we represented the SGAs of a tumor as a text document by pooling the words representing individual SGAs. We applied the nested hierarchical Dirichlet process (nHDP) model to a collection of tumors of 5 cancer types from TCGA. We identified topics (consisting of co-occurring words) representing the common functional themes of different SGAs. Tumors were clustered based on their topic associations, such that each cluster consists of tumors sharing common functional themes. The resulting clusters contained mixtures of cancer types, which indicates that different cancer types can share disease mechanisms. Survival analysis based on the clusters revealed significant differences in survival among the tumors of the same cancer type that were assigned to different clusters. CONCLUSIONS: The results indicate that applying topic modeling to semantic representations of tumors identifies patterns in the combinations of altered functional pathways in cancer.


Assuntos
Bases de Conhecimento , Redes e Vias Metabólicas/genética , Modelos Genéticos , Modelos Estatísticos , Neoplasias/metabolismo , Análise por Conglomerados , Feminino , Humanos , Masculino , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/mortalidade , Prognóstico , Semântica , Análise de Sobrevida
17.
IEEE Trans Image Process ; 26(6): 2944-2956, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28410108

RESUMO

We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with the state-of-the-art single image de-raining methods, our method has improved rain removal and much faster computation time after network training.

18.
IEEE Trans Pattern Anal Mach Intell ; 37(2): 256-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353240

RESUMO

We develop a nested hierarchical Dirichlet process (nHDP) for hierarchical topic modeling. The nHDP generalizes the nested Chinese restaurant process (nCRP) to allow each word to follow its own path to a topic node according to a per-document distribution over the paths on a shared tree. This alleviates the rigid, single-path formulation assumed by the nCRP, allowing documents to easily express complex thematic borrowings. We derive a stochastic variational inference algorithm for the model, which enables efficient inference for massive collections of text documents. We demonstrate our algorithm on 1.8 million documents from The New York Times and 2.7 million documents from Wikipedia.

19.
IEEE Trans Pattern Anal Mach Intell ; 37(2): 290-306, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353242

RESUMO

We develop a Bayesian nonparametric approach to a general family of latent class problems in which individuals can belong simultaneously to multiple classes and where each class can be exhibited multiple times by an individual. We introduce a combinatorial stochastic process known as the negative binomial process ( NBP ) as an infinite-dimensional prior appropriate for such problems. We show that the NBP is conjugate to the beta process, and we characterize the posterior distribution under the beta-negative binomial process ( BNBP) and hierarchical models based on the BNBP (the HBNBP). We study the asymptotic properties of the BNBP and develop a three-parameter extension of the BNBP that exhibits power-law behavior. We derive MCMC algorithms for posterior inference under the HBNBP , and we present experiments using these algorithms in the domains of image segmentation, object recognition, and document analysis.


Assuntos
Análise por Conglomerados , Informática/métodos , Algoritmos , Teorema de Bayes , Simulação por Computador , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Estatísticas não Paramétricas
20.
IEEE Trans Image Process ; 23(12): 5007-19, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25265609

RESUMO

We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRIs) from highly undersampled k -space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements. The size of the dictionary and patch-specific sparsity pattern are inferred from the data, in addition to other dictionary learning variables. Dictionary learning is performed directly on the compressed image, and so is tailored to the MRI being considered. In addition, we investigate a total variation penalty term in combination with the dictionary learning model, and show how the denoising property of dictionary learning removes dependence on regularization parameters in the noisy setting. We derive a stochastic optimization algorithm based on Markov chain Monte Carlo for the Bayesian model, and use the alternating direction method of multipliers for efficiently performing total variation minimization. We present empirical results on several MRI, which show that the proposed regularization framework can improve reconstruction accuracy over other methods.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos , Inteligência Artificial , Encéfalo/anatomia & histologia , Humanos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA