Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668223

RESUMO

Magnetite nanoparticles (NPs) possess properties that make them suitable for a wide range of applications. In recent years, interest in the synthesis of magnetite NPs and their surface functionalization has increased significantly, especially regarding their application in biomedicine such as for controlled and targeted drug delivery. There are several conventional methods for preparing magnetite NPs, all of which mostly utilize Fe(iii) and Fe(ii) salt precursors. In this study, we present a microwave hydrothermal synthesis for the precipitation of magnetite NPs at temperatures of 200 °C for 20 min and 260 °C for 5 min, with only iron(iii) as a precursor utilizing chamomile flower extract as a stabilizing, capping, and reducing agent. Products were characterized using FTIR, PXRD, SEM, and magnetometry. Our analysis revealed significant differences in the properties of magnetite NPs prepared with this approach, and the conventional two-precursor hydrothermal microwave method (sample MagH). FTIR and PXRD analyses confirmed coated magnetite particles. The temperature and magnetic-field dependence of magnetization indicate their superparamagnetic behavior. Importantly, the results of our study show the noticeable cytotoxicity of coated magnetite NPs-toxic to carcinoma cells but harmless to healthy cells-further emphasizing the potential of these NPs for biomedical applications.

2.
Inorg Chem ; 62(42): 17219-17227, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37823905

RESUMO

A one-dimensional (1D) ladder-like coordination polymer {NH4[{Cu(bpy)}2(C2O4)Fe(C2O4)3]·H2O}n (1; bpy = 2,2'-bipyridine) containing [Cu(bpy)(µ-C2O4)Cu(bpy)]2+ cationic units linked by oxalate groups of [Fe(C2O4)3]3- building blocks was investigated as a new type of photoactive solid-state system. It exhibits a photocoloration effect when exposed to direct sunlight or UV/vis irradiation. The photochromic properties and mechanism were studied by powder and single-crystal X-ray diffraction, UV/vis diffuse reflectance, IR and electron paramagnetic resonance spectroscopy, magnetization and impedance measurements, and density functional theory calculations. The process of photochromism involves simultaneous intramolecular electron transfers from the oxalate ligand to Fe(III) and to [CuII(bpy)(µ-C2O4)CuII(bpy)]2+, leading to the reduction of the metal centers to the electronic states Fe(II) and Cu(I), accompanied by the release of gaseous CO2.

3.
Phys Chem Chem Phys ; 25(33): 22345-22358, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37581004

RESUMO

Bismuth ferrite (BFO, BiFeO3), exhibiting both ferromagnetic and ferroelectric properties at room temperature, is one of the most researched multiferroic materials with a growing number of technological applications. In the present study, using a combined theoretical-experimental approach, we have investigated the influence of Ho-doping on the structural, electronic and magnetic properties of BFO. Synthesis and structural XRD characterization of Bi1-xHoxFeO3 (x = 0.02, 0.05, and 0.10) nanopowders have been completed. After structure prediction of Ho-doped BiFeO3 using bond valence calculations (BVC), six most favorable candidates were found: α-, ß-, γ-, R-, T1, and T2. Furthermore, all structure candidates have been examined for different magnetic ordering using DFT calculations. The magnetic behavior of the synthesized materials was investigated using a SQUID magnetometer equipped with an oven. The plethora of magnetic and electronic properties of the Ho-doped BFO that our theoretical research predicted can open up rich possibilities for further investigation and eventual applications.

4.
Inorg Chem ; 62(24): 9418-9428, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37290133

RESUMO

Two heterometallic coordination polymers {[NH(CH3)2(C2H5)]8[Mn4Cl4Cr4(C2O4)12]}n (1) and {[NH(CH3)-(C2H5)2]8[Mn4Cl4Cr4(C2O4)12]}n (2) were obtained by slow evaporation of an aqueous solution containing the building block [A]3[Cr(C2O4)3] [A = (CH3)2(C2H5)NH+ or (CH3)(C2H5)2NH+] and MnCl2·2H2O. The isostructural compounds comprise irregular two-dimensional (2D) oxalate-bridged anionic layers [Mn4Cl4Cr4(C2O4)12]n8n- with a Shubnikov plane net fes topology designated as (4·82), interleaved by the hydrogen-bonded templating cations (CH3)2(C2H5)NH+ (1) or (CH3)(C2H5)2NH+ (2). They exhibit remarkable humidity-sensing properties and very high proton conductivity at room temperature [1.60 × 10-3 (Ω·cm)-1 at 90% relative humidity (RH) of 1 and 9.6 × 10-4 (Ω·cm)-1 at 94% RH of 2]. The layered structure facilitates the uptake of water molecules, which contributes to the enhancement of proton conductivity at high RH. The better proton transport observed in 1 compared to that in 2 can be tentatively attributed to the higher hydrophilicity of the cations (CH3)2(C2H5)NH+, which is closely related to their affinity for water molecules. The original topology of the anionic networks in both compounds leads to the development of interesting magnetic phases upon cooling. The magnetically ordered ground state can be described as the coupling of ferromagnetic spin chains in which Mn2+ and Cr3+ ions are bridged by bis(bidentate) oxalate groups into antiferromagnetic planes through monodentate-bidentate oxalate bridges in the layers, which are triggered to long-range order below temperature 4.45 K via weaker interlayer interactions.

5.
Cryst Growth Des ; 23(6): 4262-4272, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37304397

RESUMO

Tetrachlorocuprate(II) hybrids of the three anisidine isomers (ortho-, meta-, and para-, or 2-, 3-, and 4-methoxyaniline, respectively) were prepared and studied in the solid state via X-ray diffraction and magnetization measurements. Depending on the position of the methoxy group of the organic cation, and subsequently, the overall cation geometry, a layered, defective layered, and the structure comprising discrete tetrachlorocuprate(II) units were obtained for the para-, meta-, and ortho-anisidinium hybrids, respectively. In the case of layered and defective layered structures, this affords quasi-2D-layered magnets, demonstrating a complex interplay of strong and weak magnetic interactions that lead to the long-range ferromagnetic (FM) order. In the case of the structure with discrete CuCl42- ions, a peculiar antiferromagnetic (AFM) behavior was revealed. The structural and electronic origins of magnetism are discussed in detail. To supplement it, the method for calculation of dimensionality of the inorganic framework as a function of interaction length was developed. The same was used to discriminate between n-dimensional and "almost" n-dimensional frameworks, to estimate the organic cation geometry limits for layered halometallates, and to provide additional reasoning behind the observed relation between cation geometry and framework dimensionality, as well as their relation to differences in magnetic behavior.

6.
Inorg Chem ; 61(45): 18181-18192, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36318217

RESUMO

MOF-74 is an archetypal magnetic metal-organic framework (MOF) family, with metal nodes bridged by 2,5-dioxido-1,4-benzenedicarboxylic acid (H4dobdc) and arranged into one of the simplest representations of the 1D Ising magnetic model. Recently, a novel mechano-synthetic approach opened a pathway toward a series of bimetallic multivariate (1:1) M1M2-MOF-74 materials, with the uniform distribution of metal cations in the oxometallic chains, offering a unique opportunity to investigate low-dimensional magnetism in these heterometallic MOFs. We explore here how different mechanochemical procedures affect the interaction between the metal nodes of the model system of three multivariate copper(II)/zinc(II)-MOF-74 materials, two of which were obtained through a template-controlled procedure, and the third one was obtained by recently developed mechanical MOF-alloying combined with subsequent accelerated aging. While the three Cu/Zn-MOF-74 products have almost identical powder X-ray diffraction (PXRD) diffractograms and Fourier transform infrared spectra, they differ significantly in their magnetic properties, as revealed through detailed magnetization and X-band and multifrequency high-field electron spin resonance measurements. The magnetic results of the three multivariate Cu/Zn-MOF-74s were compared to the properties of the monometallic Cu-MOF-74, which shows antiferromagnetic intrachain and weaker ferromagnetic interchain interactions. Energy-dispersive X-ray spectroscopy/scanning electron microscopy and solid-state nuclear magnetic resonance spectroscopy helped rationalize the observed differences in magnetization, and in situ synchrotron PXRD monitoring of template-controlled MOF formation revealed different reaction pathways when using the zinc or copper intermediates, involving even the fleeting occurrence of a rare MOF-74 polymorph.

7.
Dalton Trans ; 51(42): 16292-16306, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219155

RESUMO

Seven novel oxalate-based [CuIICrIII] compounds: [Cu4(terpy)4Cl5][Cr(C2O4)3]·9H2O (1; terpy = 2,2':6',2''-terpyridine), {[Cr2Cu4(H2O)2(terpy)4(C2O4)7]·10H2O}n (2), [Cr2Cu4(H2O)2(terpy)4(C2O4)7]·12H2O (3), [Cu(H2O)3(terpy)][CrCu(H2O)(terpy)(C2O4)3]2·9H2O (4), [Cu(H2O)(terpy)(NO3)][CrCu(H2O)(terpy)(C2O4)3]·6H2O (5), [CrCu2(terpy)2(C2O4)3(NO3)]·1.5H2O·CH3OH (6) and [Cr2Cu4(H2O)4(terpy)4(C2O4)6][Cr2Cu2(terpy)2(C2O4)6]·9H2O·CH3OH (7) were obtained from the reaction of an aqueous solution of the building block [Cr(C2O4)3]3- and a methanol solution containing Cu2+ ions and terpyridine ligand by the layering technique. Interestingly, changing only the anion of the starting salt of copper(II), NO3- instead of Cl-, resulted in an unexpected modification in the bridge type, namely oxalate (compounds 2-7) versus chloride (compound 1). During the crystallization process in the test tube, the partial decomposition of the tris(oxalato)chromate(III) anion leads to the release of the oxalate ligand from the coordination sphere of chromium(III). Consequently, this oxalate ligand is coordinated to copper(II) ions in the reaction mixture, resulting in the oxalate-bridged cationic moieties of copper(II) ions [(terpy)Cu(µ-C2O4)Cu(terpy)]2+ of 2 and 3. Compounds 4-7 were formed in the same test tube using identical components as for 2 and 3, but in a different ratio; during preparation, the starting material did not decompose and retained its original role as a building block. The compounds were studied by single-crystal X-ray diffraction, IR spectroscopy, magnetization measurements and density functional theory (DFT) calculations. Compound 1 exhibits a ground-state spin of 1 due to antiferromagnetic and ferromagnetic interactions of Cu2+ ions across the chloride bridges in the tetramer; ferromagnetic coupling transferred through the oxalate bridge was found between Cu2+ ions in compound 2 and between Cu2+ and Cr3+ in compounds 4 and 5. Since compound 3 is considered to be a very similar fragment of compound 2, a ferromagnetic interaction between two Cu2+ ions bridged by a bis(bidentate) oxalate group is also expected. The performed calculations for compound 7 indicate that the main interaction is ferromagnetic.

8.
Dalton Trans ; 51(6): 2338-2345, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35043132

RESUMO

From the reaction of 2-hydroxy-6-methylpyridine (L) with iron(II) tetrafluoroborate, a new mononuclear iron(III) octahedral complex [FeL6](BF4)3 has been isolated. The color of the complex reversibly changed from red at room temperature to yellow-orange at the liquid nitrogen temperature. Magnetization measurements indicate that iron(III) in [FeL6](BF4)3 is in a high-spin state S = 5/2, from room temperature to 1.8 K. The high-spin ground state of iron(III) is also confirmed by DFT calculations. Although the spin-crossover of the complex is not observed, X-band and multifrequency high-field/high-frequency electron spin resonance (ESR) spectroscopy shows rather uncommon iron(III) spectra at room temperature and an unusual change with cooling. Spectral simulations reveal that the S = 5/2 ground state multiplet of the complex can be characterized by the temperature independent axial zero-field splitting parameter of |D| = +2 GHz (0.067 cm-1) while the value of the rhombic parameter E of the order of some tenths MHz increases on lowering the temperature. Single crystal X-ray diffraction (SCXRD) shows that the iron(III) coordination geometry does not change with temperature while supramolecular interactions are temperature dependent, influencing the iron(III) rhombicity. Additionally, the DFT calculations show temperature variation of the HOMO-LUMO gap, in agreement with the changes of color and ESR-spectra of the iron(III) complex with temperature.

9.
Materials (Basel) ; 14(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34639934

RESUMO

A novel one-dimensional (1D) oxalate-bridged coordination polymer of iron(III), {[NH(CH3)(C2H5)2][FeCl2(C2O4)]}n (1), exhibits remarkable humidity-sensing properties and very high proton conductivity at room temperature (2.70 × 10-4 (Ω·cm)-1 at 298 K under 93% relative humidity), in addition to the independent antiferromagnetic spin chains of iron(III) ions bridged by oxalate groups (J = -7.58(9) cm-1). Moreover, the time-dependent measurements show that 1 could maintain a stable proton conductivity for at least 12 h. Charge transport and magnetic properties were investigated by impedance spectroscopy and magnetization measurements, respectively. Compound 1 consists of infinite anionic zig-zag chains [FeCl2(C2O4)]nn- and interposed diethylmethylammonium cations (C2H5)2(CH3)NH+, which act as hydrogen bond donors toward carbonyl oxygen atoms. Extraordinarily, the studied coordination polymer exhibits two reversible phase transitions: from the high-temperature phase HT to the mid-temperature phase MT at T ~213 K and from the mid-temperature phase MT to the low-temperature phase LT at T ~120 K, as revealed by in situ powder and single-crystal X-ray diffraction. All three polymorphs show large linear thermal expansion coefficients.

10.
Materials (Basel) ; 14(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34640219

RESUMO

The study of the transition from high-entropy alloys (HEAs) to conventional alloys (CAs) composed of the same alloying components is apparently important, both for understanding the formation of HEAs and for proper evaluation of their potential with respect to that of the corresponding CAs. However, this transition has thus far been studied in only two types of alloy systems: crystalline alloys of iron group metals (such as the Cantor alloy and its derivatives) and both amorphous (a-) and crystalline alloys, TE-TL, of early (TE = Ti, Zr, Nb, Hf) and late (TL = Co, Ni, Cu) transition metals. Here, we briefly overview the main results for the transition from HEAs to CAs in these alloy systems and then present new results for the electronic structure (ES), studied with photoemission spectroscopy and specific heat, atomic structure, thermal, magnetic and mechanical properties of a-TE-TL and Cantor-type alloys. A change in the properties of the alloys studied on crossing from the HEA to the CA concentration range mirrors that in the ES. The compositions of the alloys having the best properties depend on the alloy system and the property selected. This emphasizes the importance of knowing the ES for the design of new compositional complex alloys with the desired properties.

11.
Inorg Chem ; 60(12): 8475-8488, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34060812

RESUMO

Pure and Co3+-doped BaAl2O4 [Ba(Al1-xCox)2O4, x = 0, 0.0077, 0.0379] powder samples were prepared by a facile hydrothermal route. Elemental analyses by static secondary ion mass spectrometry (SIMS), X-ray absorption spectroscopy (XAS) measurements at the Co K-edge, and X-ray diffraction studies were fully correlated, thus addressing a complete description of the structural complexity of Co3+-doped BaAl2O4 powder. Powder X-ray diffraction (PXRD) patterns indicated that prepared samples were nanocrystalline with a hexagonal P63 symmetry. The X-ray absorption near-edge structure (XANES) measurements revealed the presence of cobalt in a +3 oxidation state, while the rarely documented, tetrahedral symmetry around Co3+ was extracted from the extended X-ray absorption fine structure (EXAFS) oscillation patterns. Rietveld structure refinements showed that Co3+ preferentially substitutes Al3+ at tetrahedral Al3 sites of the BaAl2O4 host lattice, whereas the (Al3)O4 tetrahedra remain rather regular with Co3+-O distances ranging from 1.73(9) to 1.74(9) Å. The underlying magneto-structural features were unraveled through axial and rhombic zero-field splitting (ZFS) terms. The increased substitution of Al3+ by Co3+ at Al3 sites leads to an increase of the axial ZFS terms in Co3+-doped BaAl2O4 powder from 10.8 to 26.3 K, whereas the rhombic ZFS parameters across the series change in the range from 2.7 to 10.4 K, showing a considerable increase of anisotropy together with the values of the anisotropic g-tensor components flowing from 1.7 to 2.5. We defined the line between the Co3+ doping limit and influenced magneto-structural characteristics, thus enabling the design of strategy to control the ZFS terms' contributions to magnetic anisotropy within Co3+-doped BaAl2O4 powder.

12.
Materials (Basel) ; 14(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916071

RESUMO

Hybrid metal-organic compounds as relatively new and prosperous magnetoelectric multiferroics provide opportunities to improve the polarization, magnetization and magneto-electric coupling at the same time, which usually have some limitations in the common type-I and type-II multiferroics. In this work we investigate the crystal of guanidinium copper (II) formate [C(NH2)3]Cu(HCOO)3 and give novel insights concerning the structure, magnetic, electric and magneto-electric behaviour of this interesting material. Detailed analysis of crystal structure at 100 K is given. Magnetization points to the copper (II) formate spin-chain phase that becomes ordered below 4.6 K into the canted antiferromagnetic (AFM) state, as a result of super-exchange interaction over different formate bridges. The performed ab-initio colinear density functional theory (DFT) calculations confirm the AFM-like ground state as a first approximation and explain the coupling of spin-chains into the AFM ordered lattice. In versatile measurements of magnetization of a crystal, including transverse component besides the longitudinal one, very large anisotropy is found that might originate from canting of the coordination octahedra around copper (II) in cooperation with the canted AFM order. With cooling down in zero fields the generation of spontaneous polarization is observed step-wise below 270 K and 210 K and the effect of magnetic field on its value is observed also in the paramagnetic phase. Measured polarization is somewhat smaller than the DFT value in the c-direction, possibly due to twin domains present in the crystal. The considerable magneto-electric coupling below the magnetic transition temperature is measured with different orientations of the crystal in magnetic field, giving altogether the new light onto the magneto-electric effect in this material.

13.
Inorg Chem ; 59(24): 18078-18089, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33289548

RESUMO

The heterodimetallic [CuFe] compounds [CuII4(terpy)4Cl5][FeIII(C2O4)3]·10H2O (1;terpy = 2,2':6',2''-terpyridine), [CuII2(H2O)2(terpy)2(C2O4)][CuIIFeIII(CH3OH)(terpy)(C2O4)3]2 (2), and {[Cu2IIFeIII(H2O)(terpy)2(C2O4)7/2]·6H2O}n (3) were obtained using building block approach, from reaction of aqueous solution of [Fe(C2O4)3]3- and a methanol solution containing Cu2+ ions and terpy by the layering technique. Interestingly, by changing only the anion of the starting salt of copper(II), Cu(NO3)2·3H2O instead of CuCl2·2H2O, an unexpected change in the type of bridge, oxalate (2 and 3) versus chloride (1), was achieved, thus affecting the overall structural architecture. Two polymorphs of 3D coordination polymer [CuIIFeII2(H2O)(terpy)(C2O4)3]n (4), crystallizing in the triclinic (a) and monoclinic (b) space groups, were formed hydrothermally, depending on whether CuCl2·2H2O or Cu(NO3)2·3H2O was added to the water, besides K3[Fe(C2O4)3]·3H2O and terpy, respectively. Under hydrothermal conditions iron(III) from initial building block is reduced to the divalent state, creating 2D honeycomb [FeII2(C2O4)3]n2n- layers, which are bridged by [Cu(H2O)(terpy)]2+ cations. Compounds were investigated by single-crystal X-ray diffraction, IR, and impedance spectroscopies, magnetization measurements, and density functional theory (DFT) calculations. In compounds 1 and 2, 0D magnetism is observed, with 1 having a ground-state spin of 1 due to different interactions through chloride bridges of Cu2+ ions in tetramer [CuII4(terpy)4Cl5]3+ and 2 showing strong antiferromagnetic coupling of Cu2+ ions mediated by oxalate ligand in [CuII2(H2O)2(terpy)2(C2O4)]2+ and weak ones between Cu2+ and Fe3+ ions through oxalate bridge in [CuIIFeIII(CH3OH)(terpy)(C2O4)3]-. Polymer 4 exhibits antiferromagnetic phase transition at 25 K: The [FeII2(C2O4)3]n2n- layers are antiferromagnetically ordered, and a small amount of interlayer interaction is transferred through [Cu(H2O)(terpy)]2+ cations via Oox-Cu-Oox bridges. Additionally, compounds 1 and 2 are electrical insulators, while 4a and 4b show proton conductivity.

14.
Materials (Basel) ; 13(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255776

RESUMO

One-dimensional (1D) oxalate-bridged homometallic {[Mn(bpy)(C2O4)]·1.5H2O}n (1) (bpy = 2,2'-bipyridine) and heterodimetallic {[CrCu3(bpy)3(CH3OH)(H2O)(C2O4)4][Cu(bpy)Cr(C2O4)3]·CH2Cl2·CH3OH·H2O}n (2) coordination polymers, as well as the three-dimensional (3D) heterotrimetallic {[CaCr2Cu2(phen)4(C2O4)6]·4CH3CN·2H2O}n (3) (1,10-phenanthroline) network, have been synthesized by a building block approach using a layering technique, and characterized by single-crystal X-ray diffraction, infrared (IR) and impedance spectroscopies and magnetization measurements. During the crystallization process partial decomposition of the tris(oxalate)chromate(III) happened and 1D polymers 1 and 2 were formed. The antiferromagnetic interactions between the manganese(II) ions was mediated by oxalate ligands in the chain [Mn(bpy)(C2O4)]n of 1, with intra-chain super-exchange interaction ? = (-3.134 ± 0.004) K; magnetic interaction between neighbouring chains is negligible making this system closer than other known Mn-chains to the ideal 1D Heisenberg antiferromagnet. Compound 2 comprises a 1D coordination anion [Cu(bpy)Cr(C2O4)3]nn- (Cr2-Cu4) with alternating [Cr(C2O4)3]3- and [Cu(bpy)]2+ units mutually bridged through the oxalate group. Another chain (Cr1-Cu3) is similar, but involves a homodinuclear unit [Cu(bpy)(H2O)(µ-C2O4)Cu(bpy)(CH3OH)]2+ (Cu1-Cu2) coordinated as a pendant group to a terminal oxalate oxygen. Magnetic measurements showed that the Cu1-Cu2 cationic unit is a strongly coupled antiferromagnetic dimer, independent from the other magnetic ions within ferromagnetic chains Cr1-Cu3 and Cr2-Cu4. A 3D polymer {[CaCr2Cu2(phen)4(C2O4)6]·4CH3CN·2H2O}n (3) comprising three different metal centers (Ca2+, Cr3+ and Cu2+) oxalate-bridged, contains Ca2+ atoms as nodes connected with four Cr3+ atoms through oxalate ligands. The network thus formed can be reduced to an underlying graph of diamondoid (dia) or (66) topology. Magnetization of 3 shows the ferromagnetic oxalate-bridged dimers [CuIICrIII], whose mutual interaction could possibly originate through the spin polarization of Ca2+ orbitals. Compounds 1 and 3 exhibit lower electrical conductivity at room temperature (RT) in comparison to compound 2.

15.
Sci Rep ; 9(1): 15158, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641185

RESUMO

Inorganic materials that enable a link between the storage and release of molecular oxygen offer a fertile ground in continuous quest for the applications that can potentially reduce energy consumption and thus minimize adverse effects on the environment. Herein, we address reversible intake/release of an oxygen within the BaAl2O4 material as evidenced by unexpected magnetic ordering. Magnetic measurements unveil that an oxygen is stored in the form of condensed matter, creating a kind of low dimensional, chain-like assembly within the tunnels of BaAl2O4 structure. We demonstrate that oxygen is adsorbed simply by staying in air, at ambient conditions, and released relatively quickly by staying in the He or other gas atmosphere of several millibars pressure even at 300 K.

16.
Dalton Trans ; 48(22): 7891-7898, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31080984

RESUMO

Three heterometallic one-dimensional (1D) coordination polymers {A[CrCu2(bpy)2(C2O4)4]·H2O}n [A = K+ (1) and NH4+ (2); bpy = 2,2'-bipyridine] and [(Cr2O7)Cu2(C2O4)(phen)2]n (3; phen = 1,10-phenanthroline) with uncommon topology have been synthesized using a building block approach and characterized by single-crystal X-ray diffraction, IR and impedance spectroscopies, magnetization measurements, and DFT calculations. Due to the partial decomposition of the building block [Cr(C2O4)3]3-, all three compounds contain oxalate-bridged [Cu2(L)2(µ-C2O4)]2+ units [L = bpy (1 and 2) and phen (3)]. In compounds 1 and 2 these cations are mutually connected through oxalate groups from [Cr(C2O4)3]3-, thus forming ladder-like topologies. Unusually, three different bridging modes of the oxalate ligand are observed in these chains. In compound 3 copper(ii) ions from cationic units are bridged through the oxygen atoms of Cr2O72- anions in a novel ladder-like mode. Very strong antiferromagnetic coupling observed in all three compounds, determined from the magnetization measurements and confirmed by DFT calculations (J = -343, -371 and -340 cm-1 for 1, 2 and 3, respectively), appears between two copper(ii) ions interacting through the oxalate bridge.

17.
Dalton Trans ; 47(12): 4183-4190, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29479599

RESUMO

Three heterometallic oxo-bridged compounds, [Cr2(phen)4(µ-O)4Nb2(C2O4)4]·2H2O (1; phen = 1,10-phenanthroline), [Cr2(terpy)2(H2O)2(µ-O)4Nb2(C2O4)4]·4H2O (2; terpy = 2,2';6',2''-terpyridine) and [Cr(terpy)(C2O4)(H2O)][Cr2(terpy)2(C2O4)2(µ-O)2Nb(C2O4)2]·3H2O (3), have been synthesized using a building block approach and characterized by IR spectroscopy, single-crystal and powder X-ray diffraction, magnetization measurements, and DFT calculations. The molecular structures of 1 and 2, crystallizing in P42212 and P21/n space groups, respectively, contain a square-shaped {Cr(µ-O)4Nb} unit, while that of complex salt 3 (P1[combining macron] space group) consists of a mononuclear cation containing CrIII and trinuclear anions in which two CrIII ions are bridged by a -O-NbV-O- fragment. Besides hydrogen-bonding patterns resulting in a 1D- or 3D-supramolecular arrangement in 1-3, an unusual intermolecular contact has been noticed between parallel oxalate moieties occurring due to the electrostatic attraction of electron-rich carbonyl oxygen and severely electron-depleted carbon atoms in the crystal packing of 2. The antiferromagnetic coupling observed in all three compounds, determined from magnetization measurements (J = -13.51(2), -8.41(1) and -7.44(4) cm-1 for 1, 2 and 3, respectively) and confirmed by DFT calculations, originates from two CrIII ions with spin 3/2 interacting through diamagnetic -O-NbV-O- bridge(s).

18.
Dalton Trans ; 46(35): 11748-11756, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28828439

RESUMO

The reaction of bis(phenanthroline)metal(ii) cations (M = Mn2+, Co2+, Ni2+, Cu2+ and Zn2+) with bis(oxalato)chromium(iii) anions in a water/ethanol solution gives rise to a series of compounds with oxalate-bridged cations, [{M(phen)2}2(µ-C2O4)][Cr(phen)(C2O4)2]2·4H2O [Mn2Cr2 (1), Co2Cr2 (2), Ni2Cr2 (3), Cu2Cr2 (4) and Zn2Cr2 (5)]. Their structural analysis reveals that all the prepared compounds crystallize in the triclinic system, space group P1[combining macron], having similar unit cell parameters, molecular structures and crystal packing features. All metal centres in 1-5 are octahedrally coordinated: M2+ in homodinuclear cations are coordinated with two phen molecules and one bridging oxalate ligand; Cr3+ in anions is coordinated with one phen ligand and two bidentate oxalate groups. The copper atom in Cu2Cr2 (4) exhibits a Jahn-Teller-distorted octahedral coordination. Owing to the considerable number of pyridyl groups present in 1-5 (from phen ligands) the crystal packing of cations and anions is driven by stacking interactions appearing in offset-face-to-face (OFF) and edge-to-face (EF) orientations. The hydrogen bonds between the anions and water molecules of crystallization form 1D ladder-like motifs. In addition to the single crystal X-ray diffraction studies, the characterization of the new complexes was accomplished by means of IR and UV/Vis spectroscopy and magnetization measurements on a SQUID magnetometer. The temperature dependence of magnetic susceptibility reveals different magnetic super exchange interactions taking place in homodinuclear oxalate-bridged cations depending on the transition metal centre (Mn2+, Co2+, Ni2+ and Cu2+). Oxalate ligands mediate the ferromagnetic coupling of Cu2+ metal cations in Cu2Cr2 (4), whereas in Mn2Cr2 (1), Co2Cr2 (2) and Ni2Cr2 (3), antiferromagnetic interactions are observed between Mn2+, Co2+ and Ni2+ cations, respectively. Also, relatively large zero-field splitting parameters for Cr3+ ions (from mononuclear anions), D ≈ 1 cm-1, were observed.

19.
Inorg Chem ; 56(12): 6879-6889, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28586215

RESUMO

The synthesis and properties of a novel hetero-tetranuclear compound [Cr2(bpy)4(µ-O)4Nb2(C2O4)4]·3H2O (1; bpy = 2,2'-bipyridine), investigated by single-crystal X-ray diffraction, magnetization measurements, IR, UV/visible spectroscopy, electron paramagnetic resonance (EPR; X- and Q-bands and high-field), and density functional theory (DFT) calculations, are reported. Crystal structure of 1 (orthorhombic Pcab space group) consists of a square-shaped macrocyclic {Cr2(µ-O)4Nb2} core in which CrIII and NbV ions are alternately bridged by oxo ions and three uncoordinated water molecules. The intramolecular CrIII···CrIII distances through the -O-NbV-O- bridges are 7.410(2) and 7.419(2) Å, while diagonal separation is 5.406(2) Å. The temperature dependence of magnetization M(T) evidences an anti-ferromagnetic ground state, which originates from a magnetic interaction between two CrIII ions of spin 3/2 through two triatomic -O-NbV-O- diamagnetic bridges. A spin Hamiltonian appropriate for polynuclear isolated magnetic units was used. The best-fitting curve for this model is obtained with the parameters gCr = 1.992(3), J = -12.77(5) cm-1, and |D| = 0.17(4) cm-1. The CrIII···CrIII dimer model is confirmed by EPR spectra, which exhibit a pronounced change of their shape around the temperature corresponding to the intradimer coupling J. The EPR spectra simulations and DFT calculations reveal the presence of a single-ion anisotropy that is close to being uniaxial, D = -0.31 cm-1 and E = 0.024 cm-1.

20.
Inorg Chem ; 56(7): 3983-3989, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306257

RESUMO

The sizes of CoMn2O4 nanoparticles can easily be tuned, from 40 to 8 nm, depending on the temperature of decomposition of the single-source molecular precursor {[Co(bpy)3][Mn2(C2O4)3]·H2O}n. The structural features of the CoMn2O4 spinel are also affected by the heat treatment temperature, showing a pronounced expansion of unit cell parameters as a consequence of thermally induced cation redistribution between tetrahedral and octahedral sites. Moreover, the magnetic behavior of CoMn2O4 was successfully tailored as well; depending on the heat treatment, it is possible to switch between the superparamagnetic and ferrimagnetic ordering and to tailor the magnetic transition temperatures, i.e., the boundaries between the hard and soft magnetic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA