Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Ann Clin Transl Neurol ; 11(3): 629-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311799

RESUMO

OBJECTIVE: ACTN2, encoding alpha-actinin-2, is essential for cardiac and skeletal muscle sarcomeric function. ACTN2 variants are a known cause of cardiomyopathy without skeletal muscle involvement. Recently, specific dominant monoallelic variants were reported as a rare cause of core myopathy of variable clinical onset, although the pathomechanism remains to be elucidated. The possibility of a recessively inherited ACTN2-myopathy has also been proposed in a single series. METHODS: We provide clinical, imaging, and histological characterization of a series of patients with a novel biallelic ACTN2 variant. RESULTS: We report seven patients from five families with a recurring biallelic variant in ACTN2: c.1516A>G (p.Arg506Gly), all manifesting with a consistent phenotype of asymmetric, progressive, proximal, and distal lower extremity predominant muscle weakness. None of the patients have cardiomyopathy or respiratory insufficiency. Notably, all patients report Palestinian ethnicity, suggesting a possible founder ACTN2 variant, which was confirmed through haplotype analysis in two families. Muscle biopsies reveal an underlying myopathic process with disruption of the intermyofibrillar architecture, Type I fiber predominance and atrophy. MRI of the lower extremities demonstrate a distinct pattern of asymmetric muscle involvement with selective involvement of the hamstrings and adductors in the thigh, and anterior tibial group and soleus in the lower leg. Using an in vitro splicing assay, we show that c.1516A>G ACTN2 does not impair normal splicing. INTERPRETATION: This series further establishes ACTN2 as a muscle disease gene, now also including variants with a recessive inheritance mode, and expands the clinical spectrum of actinopathies to adult-onset progressive muscle disease.


Assuntos
Cardiomiopatias , Doenças Musculares , Adulto , Humanos , Doenças Musculares/genética , Doenças Musculares/patologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Actinina/genética , Fenótipo
2.
medRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38405995

RESUMO

Spinal muscular atrophy (SMA) is a genetic disorder that causes progressive degeneration of lower motor neurons and the subsequent loss of muscle function throughout the body. It is the second most common recessive disorder in individuals of European descent and is present in all populations. Accurate tools exist for diagnosing SMA from short read and long read genome sequencing data. However, there are no publicly available tools for GRCh38-aligned data from panel or exome sequencing assays which continue to be used as first line tests for neuromuscular disorders. We therefore developed and extensively validated a new tool - SMA Finder - that can diagnose SMA not only in genome, but also exome and targeted sequencing samples aligned to GRCh37, GRCh38, or T2T-CHM13. It works by evaluating aligned reads that overlap the c.840 position of SMN1 and SMN2 in order to detect the most common molecular causes of SMA. We applied SMA Finder to 16,626 exomes and 3,911 genomes from heterogeneous rare disease cohorts sequenced at the Broad Institute Center for Mendelian Genomics as well as 1,157 exomes and 8,762 targeted sequencing samples from Tartu University Hospital. SMA Finder correctly identified all 16 known SMA cases and reported nine novel diagnoses which have since been confirmed by clinical testing, with another four novel diagnoses undergoing validation. Notably, out of the 29 total SMA positive cases, 21 had an initial clinical diagnosis of muscular dystrophy, congenital myasthenic syndrome, or congenital myopathy. This underscored the frequency with which SMA can be misdiagnosed as other neuromuscular disorders and confirmed the utility of using SMA Finder to reanalyze phenotypically diverse neuromuscular disease cohorts. Finally, we evaluated SMA Finder on 198,868 individuals that had both exome and genome sequencing data within the UK Biobank (UKBB) and found that SMA Finder's overall false positive rate was less than 1 / 200,000 exome samples, and its positive predictive value (PPV) was 96%. We also observed 100% concordance between UKBB exome and genome calls. This analysis showed that, even though it is located within a segmental duplication, the most common causal variant for SMA can be detected with comparable accuracy to monogenic disease variants in non-repetitive regions. Additionally, the high PPV demonstrated by SMA Finder, the existence of treatment options for SMA in which early diagnosis is imperative for therapeutic benefit, as well as widespread availability of clinical confirmatory testing for SMA, may warrant the addition of SMN1 to the ACMG list of genes with reportable secondary findings after genome and exome sequencing.

3.
Am J Hum Genet ; 110(12): 2112-2119, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37963460

RESUMO

Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WW domain-binding protein 4 (WBP4) is part of the early spliceosomal complex and has not been previously associated with human pathologies in the Online Mendelian Inheritance in Man (OMIM) database. Through GeneMatcher, we identified ten individuals from eight families with a severe neurodevelopmental syndrome featuring variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal, and gastrointestinal abnormalities. Genetic analysis revealed five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated a complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including in genes associated with abnormalities of the nervous system, potentially underlying the phenotypes of the probands. We conclude that bi-allelic variants in WBP4 cause a developmental disorder with variable presentations, adding to the growing list of human spliceosomopathies.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Spliceossomos/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Síndrome , Malformações do Sistema Nervoso/genética , Perda de Heterozigosidade , Fenótipo
4.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37788100

RESUMO

Myosin heavy chains encoded by MYH7 and MYH2 are abundant in human skeletal muscle and important for muscle contraction. However, it is unclear how mutations in these genes disrupt myosin structure and function leading to skeletal muscle myopathies termed myosinopathies. Here, we used multiple approaches to analyze the effects of common MYH7 and MYH2 mutations in the light meromyosin (LMM) region of myosin. Analyses of expressed and purified MYH7 and MYH2 LMM mutant proteins combined with in silico modeling showed that myosin coiled coil structure and packing of filaments in vitro are commonly disrupted. Using muscle biopsies from patients and fluorescent ATP analog chase protocols to estimate the proportion of myosin heads that were super-relaxed, together with x-ray diffraction measurements to estimate myosin head order, we found that basal myosin ATP consumption was increased and the myosin super-relaxed state was decreased in vivo. In addition, myofiber mechanics experiments to investigate contractile function showed that myofiber contractility was not affected. These findings indicate that the structural remodeling associated with LMM mutations induces a pathogenic state in which formation of shutdown heads is impaired, thus increasing myosin head ATP demand in the filaments, rather than affecting contractility. These key findings will help design future therapies for myosinopathies.


Assuntos
Doenças Musculares , Humanos , Doenças Musculares/patologia , Miosinas/genética , Músculo Esquelético/metabolismo , Mutação , Trifosfato de Adenosina
5.
N Engl J Med ; 389(13): 1203-1210, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37754285

RESUMO

We treated a 27-year-old patient with Duchenne's muscular dystrophy (DMD) with recombinant adeno-associated virus (rAAV) serotype 9 containing dSaCas9 (i.e., "dead" Staphylococcus aureus Cas9, in which the Cas9 nuclease activity has been inactivated) fused to VP64; this transgene was designed to up-regulate cortical dystrophin as a custom CRISPR-transactivator therapy. The dose of rAAV used was 1×1014 vector genomes per kilogram of body weight. Mild cardiac dysfunction and pericardial effusion developed, followed by acute respiratory distress syndrome (ARDS) and cardiac arrest 6 days after transgene treatment; the patient died 2 days later. A postmortem examination showed severe diffuse alveolar damage. Expression of transgene in the liver was minimal, and there was no evidence of AAV serotype 9 antibodies or effector T-cell reactivity in the organs. These findings indicate that an innate immune reaction caused ARDS in a patient with advanced DMD treated with high-dose rAAV gene therapy. (Funded by Cure Rare Disease.).


Assuntos
Distrofina , Terapia Genética , Distrofia Muscular de Duchenne , Síndrome do Desconforto Respiratório , Transgenes , Adulto , Humanos , Anticorpos , Distrofina/genética , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/imunologia , Transgenes/genética , Transgenes/imunologia , Evolução Fatal , Imunidade Inata/genética , Imunidade Inata/imunologia
6.
J Child Neurol ; 38(6-7): 373-388, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37427422

RESUMO

INTRODUCTION: The aim of this study was to evaluate genetic risk factors in term-born children with antenatal periventricular hemorrhagic infarction (PVHI), presumed antenatal periventricular venous infarction and periventricular hemorrhagic infarction in preterm neonates. METHODS: Genetic analysis and magnetic resonance imaging were performed in 85 children: term-born children (≥36 gestational weeks) with antenatal periventricular hemorrhagic infarction (n = 6) or presumed antenatal (n = 40) periventricular venous infarction and preterm children (<36 gestational weeks) with periventricular hemorrhagic infarction (n = 39). Genetic testing was performed using exome or large gene panel (n = 6700 genes) sequencing. RESULTS: Pathogenic variants associated with stroke were found in 11 of 85 (12.9%) children with periventricular hemorrhagic infarction/periventricular venous infarction. Among the pathogenic variants, COL4A1/A2 and COL5A1 variants were found in 7 of 11 (63%) children. Additionally, 2 children had pathogenic variants associated with coagulopathy, whereas 2 other children had other variants associated with stroke. Children with collagenopathies had significantly more often bilateral multifocal stroke with severe white matter loss and diffuse hyperintensities in the white matter, moderate to severe hydrocephalus, moderate to severe decrease in size of the ipsilesional basal ganglia and thalamus compared to children with periventricular hemorrhagic infarction/periventricular venous infarction without genetic changes in the studied genes (P ≤ .01). Severe motor deficit and epilepsy developed more often in children with collagenopathies compared to children without genetic variants (P = .0013, odds ratio [OR] = 233, 95% confidence interval [CI]: 2.8-531; and P = .025, OR = 7.3, 95% CI: 1.3-41, respectively). CONCLUSIONS: Children with periventricular hemorrhagic infarction/periventricular venous infarction have high prevalence of pathogenic variants in collagene genes (COL4A1/A2 and COL5A1). Genetic testing should be considered for all children with periventricular hemorrhagic infarction/periventricular venous infarction; COL4A1/A2 and COL5A1/A2 genes should be investigated first.


Assuntos
Ventrículos Cerebrais , Acidente Vascular Cerebral , Recém-Nascido , Humanos , Criança , Feminino , Gravidez , Prevalência , Ventrículos Cerebrais/patologia , Acidente Vascular Cerebral/patologia , Deficiências do Desenvolvimento/patologia , Infarto/patologia
7.
Cancers (Basel) ; 15(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509324

RESUMO

BACKGROUND: Lynch syndrome (LS) is the most frequent genetically pre-disposed colorectal cancer (CRC) syndrome, accounting for 2-3% of all CRC cases. In Estonia, ~1000 new cases are diagnosed each year. This retroactive and prospective study aimed to estimate the prevalence of LS and describe disease-causing variants in mismatch repair (MMR) genes in a diagnostic setting and in the Estonian general population. METHODS: LS data for the diagnostic cohort were gathered from 2012 to 2022 and data for the general population were acquired from the Estonian Biobank (EstBB). Furthermore, we conducted a pilot study to estimate the improvement of LS diagnostic yield by raising the age limit to >50 years for immunohistochemistry analysis of MMR genes. RESULTS: We estimated LS live birth prevalence between 1930 and 2003 in Estonia at 1:8638 (95% CI: 1: 9859-7588). During the study period, we gathered 181 LS individuals. We saw almost a six-fold increase in case prevalence, probably deriving from better health awareness, improved diagnostic possibilities and the implementation of MMR IHC testing in a broader age group. CONCLUSION: The most common genes affected in the diagnostic and EstBB cohorts were MLH1 and PMS2 genes, respectively. The LS diagnosis mean age was 44.8 years for index cases and 36.8 years (p = 0.003) for family members. In the MMR IHC pilot study, 29% had LS.

8.
medRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37425688

RESUMO

Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WBP4 (WW Domain Binding Protein 4) is part of the early spliceosomal complex, and was not described before in the context of human pathologies. Ascertained through GeneMatcher we identified eleven patients from eight families, with a severe neurodevelopmental syndrome with variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal and gastrointestinal abnormalities. Genetic analysis revealed overall five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including enrichment for abnormalities of the nervous system and musculoskeletal system genes, suggesting that the overlapping differentially spliced genes are related to the common phenotypes of the probands. We conclude that biallelic variants in WBP4 cause a spliceosomopathy. Further functional studies are called for better understanding of the mechanism of pathogenicity.

9.
medRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37034709

RESUMO

Introduction: Epilepsy is a common central nervous system disorder characterized by abnormal brain electrical activity. We aimed to compare the metabolic profiles of plasma from patients with epilepsy across different etiologies, seizure frequency, seizure type, and patient age to try to identify common disrupted pathways. Material and methods: We used data from three separate cohorts. The first cohort (PED-C) consisted of 31 pediatric patients with suspicion of a genetic disorder with unclear etiology; the second cohort (AD-C) consisted of 250 adults from the Estonian Biobank (EstBB), and the third cohort consisted of 583 adults ≥ 69 years of age from the EstBB (ELD-C). We compared untargeted metabolomics and lipidomics data between individuals with and without epilepsy in each cohort. Results: In the PED-C, significant alterations (p-value <0.05) were detected in sixteen different glycerophosphatidylcholines (GPC), dimethylglycine and eicosanedioate (C20-DC). In the AD-C, nine significantly altered metabolites were found, mainly triacylglycerides (TAG), which are also precursors in the GPC synthesis pathway. In the ELD-C, significant changes in twenty metabolites including multiple TAGs were observed in the metabolic profile of participants with previously diagnosed epilepsy. Pathway analysis revealed that among the metabolites that differ significantly between epilepsy-positive and epilepsy-negative patients in the PED-C, the lipid superpathway (p = 3.2*10-4) and phosphatidylcholine (p = 9.3*10-8) and lysophospholipid (p = 5.9*10-3) subpathways are statistically overrepresented. Analogously, in the AD-C, the triacylglyceride subclass turned out to be statistically overrepresented (p = 8.5*10-5) with the lipid superpathway (p = 1.4*10-2). The presented p-values are FDR-corrected. Conclusion: Our results suggest that cell membrane fluidity may have a significant role in the mechanism of epilepsy, and changes in lipid balance may indicate epilepsy. However, further studies are needed to evaluate whether untargeted metabolomics analysis could prove helpful in diagnosing epilepsy earlier.

10.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36795492

RESUMO

Although protein hydroxylation is a relatively poorly characterized posttranslational modification, it has received significant recent attention following seminal work uncovering its role in oxygen sensing and hypoxia biology. Although the fundamental importance of protein hydroxylases in biology is becoming clear, the biochemical targets and cellular functions often remain enigmatic. JMJD5 is a "JmjC-only" protein hydroxylase that is essential for murine embryonic development and viability. However, no germline variants in JmjC-only hydroxylases, including JMJD5, have yet been described that are associated with any human pathology. Here we demonstrate that biallelic germline JMJD5 pathogenic variants are deleterious to JMJD5 mRNA splicing, protein stability, and hydroxylase activity, resulting in a human developmental disorder characterized by severe failure to thrive, intellectual disability, and facial dysmorphism. We show that the underlying cellular phenotype is associated with increased DNA replication stress and that this is critically dependent on the protein hydroxylase activity of JMJD5. This work contributes to our growing understanding of the role and importance of protein hydroxylases in human development and disease.


Assuntos
Histona Desmetilases , Oxigenases de Função Mista , Humanos , Animais , Camundongos , Histona Desmetilases/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Processamento de Proteína Pós-Traducional
11.
medRxiv ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38328047

RESUMO

Background: Causal variants underlying rare disorders may remain elusive even after expansive gene panels or exome sequencing (ES). Clinicians and researchers may then turn to genome sequencing (GS), though the added value of this technique and its optimal use remain poorly defined. We therefore investigated the advantages of GS within a phenotypically diverse cohort. Methods: GS was performed for 744 individuals with rare disease who were genetically undiagnosed. Analysis included review of single nucleotide, indel, structural, and mitochondrial variants. Results: We successfully solved 218/744 (29.3%) cases using GS, with most solves involving established disease genes (157/218, 72.0%). Of all solved cases, 148 (67.9%) had previously had non-diagnostic ES. We systematically evaluated the 218 causal variants for features requiring GS to identify and 61/218 (28.0%) met these criteria, representing 8.2% of the entire cohort. These included small structural variants (13), copy neutral inversions and complex rearrangements (8), tandem repeat expansions (6), deep intronic variants (15), and coding variants that may be more easily found using GS related to uniformity of coverage (19). Conclusion: We describe the diagnostic yield of GS in a large and diverse cohort, illustrating several types of pathogenic variation eluding ES or other techniques. Our results reveal a higher diagnostic yield of GS, supporting the utility of a genome-first approach, with consideration of GS as a secondary or tertiary test when higher-resolution structural variant analysis is needed or there is a strong clinical suspicion for a condition and prior targeted genetic testing has been negative.

12.
JIMD Rep ; 63(6): 604-613, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36341167

RESUMO

Inherited metabolic disorders (IMD) are a group of hereditary diseases wherein the impairment of a biochemical pathway is intrinsic to the pathophysiology of the disease. Estonia's small population and nationwide digitalised healthcare system make it possible to perform an epidemiological study that covers the whole population. A study was performed in Tartu University Hospital, which is the only tertiary care unit in Estonia for diagnosing patients with IMD, to define the prevalence and live birth prevalence of IMDs and the effectiveness of new diagnostic methods on the diagnosis of IMD. During the retrospective study period from 1990 to 2017, 333 patients were diagnosed with IMD. Statistical analysis showed a significant increase in IMD diagnoses per year from 0.47 to 2.51 cases per 100 000 persons (p < 0.0001) during the study period. Live birth prevalence of IMD in Estonia was calculated to be 41.52 cases per 100 000 live births. The most frequently diagnosed IMD groups were disorders of amino acid metabolism, disorders of complex molecule degradation, mitochondrial disorders, and disorders of tetrapyrrole metabolism. Phenylketonuria was the most frequently diagnosed disorder of all IMD (21.6%). Our results correlated well with data from other developed countries and, along with high birth prevalence, add confidence in the effectiveness of our diagnostic yield. Implementation of new diagnostic methods during study period may largely account for the significant increase in the number of IMD diagnoses per year. We conclude that the implementation of new diagnostic methods continues to be important and contributes to better diagnosis of rare diseases.

13.
Hum Mutat ; 43(12): 1844-1851, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35904126

RESUMO

TATA-binding protein associated factor 4 (TAF4) is a subunit of the Transcription Factor IID (TFIID) complex, a central player in transcription initiation. Other members of this multimeric complex have been implicated previously as monogenic disease genes in human developmental disorders. TAF4 has not been described to date as a monogenic disease gene. We here present a cohort of eight individuals, each carrying de novo putative loss-of-function (pLoF) variants in TAF4 and expressing phenotypes consistent with a neuro-developmental disorder (NDD). Common features include intellectual disability, abnormal behavior, and facial dysmorphisms. We propose TAF4 as a novel dominant disease gene for NDD, and coin this novel disorder "TAF4-related NDD" (T4NDD). We place T4NDD in the context of other disorders related to TFIID subunits, revealing shared features of T4NDD with other TAF-opathies.


Assuntos
Transtornos do Neurodesenvolvimento , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Criança , Humanos , Deficiências do Desenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
14.
Hum Mutat ; 43(10): 1347-1353, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35731190

RESUMO

The investigated intronic CAPN3 variant NM_000070.3:c.1746-20C>G occurs in the Central and Eastern Europe with a frequency of >1% and there are conflicting interpretations on its pathogenicity. We collected data on 14 patients carrying the CAPN3 c.1746-20C>G variant in trans position with another CAPN3 pathogenic/likely pathogenic variant. The patients compound heterozygous for the CAPN3 c.1746-20C>G variant presented a phenotype consistent with calpainopathy of mild/medium severity. This variant is most frequent in the North/West regions of Russia and may originate from that area. Molecular studies revealed that different splicing isoforms are produced in the muscle. We hypothesize that c.1746-20C>G is a hypomorphic variant with a reduction of RNA and protein expression and only individuals having a higher ratio of abnormal isoforms are affected. Reclassification of the CAPN3 variant c.1746-20C>G from variant with a conflicting interpretation of pathogenicity to hypomorphic variant explains many unidentified cases of limb girdle muscular dystrophy R1 calpain 3-related in Eastern and Central Europe.


Assuntos
Calpaína , Proteínas Musculares , Distrofia Muscular do Cíngulo dos Membros , Calpaína/genética , Humanos , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Splicing de RNA
15.
Front Genet ; 13: 828534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281813

RESUMO

Craniofacial morphogenesis is highly complex, as is the anatomical region involved. Errors during this process, resulting in orofacial clefts, occur in more than 400 genetic syndromes. Some cases of cleft lip and/or palate (CLP) are caused by mutations in single genes; however, complex interactions between genetic and environmental factors are considered to be responsible for the majority of non-syndromic CLP development. The aim of the current study was to identify genetic risk factors in patients with isolated cleft palate (CP) by whole genome sequencing. Patients with isolated CP (n = 30) recruited from the Riga Cleft Lip and Palate Centre, Institute of Stomatology, Riga, were analyzed by whole genome sequencing. Pathogenic or likely pathogenic variants were discovered in genes associated with CP (TBX22, COL2A1, FBN1, PCGF2, and KMT2D) in five patients; hence, rare disease variants were identified in 17% of patients with non-syndromic isolated CP. Our results were relevant to routine genetic counselling practice and genetic testing recommendations. Based on our data, we propose that all newborns with orofacial clefts should be offered genetic testing, at least for a panel of known CLP genes. Only if the results are negative and there is no suggestive family history or additional clinical symptoms (which would support additional exome or genome-wide investigation), should multifactorial empiric recurrence risk prediction tools be applied for families.

16.
Front Genet ; 13: 780764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222531

RESUMO

There are recent reports of associations of variants in the HPDL gene with a hereditary neurological disease that presents with a wide spectrum of clinical severity, ranging from severe neonatal encephalopathy with no psychomotor development to adolescent-onset uncomplicated spastic paraplegia. Here, we report two probands from unrelated families presenting with severe and intermediate variations of the clinical course. A homozygous variant in the HPDL gene was detected in each proband; however, there was no known parental consanguinity. We also highlight reductions in citrate synthase and mitochondrial complex I activity detected in both probands in different tissues, reflecting the previously proposed mitochondrial nature of disease pathogenesis associated with HPDL mutations. Further, we speculate on the functional consequences of the detected variants, although the function and substrate of the HPDL enzyme are currently unknown.

18.
Genome Med ; 13(1): 153, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34645491

RESUMO

BACKGROUND: Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation. METHODS: We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed. RESULTS: GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases. CONCLUSIONS: GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review.


Assuntos
Inteligência Artificial , Doenças Raras/genética , Bases de Dados Genéticas , Feminino , Genômica/métodos , Genótipo , Humanos , Masculino , Fenótipo , Estudos Retrospectivos , Sequenciamento do Exoma
19.
Nat Commun ; 12(1): 6227, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711829

RESUMO

The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein syntaxin-5 (Stx5) is essential for Golgi transport. In humans, the STX5 mRNA encodes two protein isoforms, Stx5 Long (Stx5L) from the first starting methionine and Stx5 Short (Stx5S) from an alternative starting methionine at position 55. In this study, we identify a human disorder caused by a single missense substitution in the second starting methionine (p.M55V), resulting in complete loss of the short isoform. Patients suffer from an early fatal multisystem disease, including severe liver disease, skeletal abnormalities and abnormal glycosylation. Primary human dermal fibroblasts isolated from these patients show defective glycosylation, altered Golgi morphology as measured by electron microscopy, mislocalization of glycosyltransferases, and compromised ER-Golgi trafficking. Measurements of cognate binding SNAREs, based on biotin-synchronizable forms of Stx5 (the RUSH system) and Förster resonance energy transfer (FRET), revealed that the short isoform of Stx5 is essential for intra-Golgi transport. Alternative starting codons of Stx5 are thus linked to human disease, demonstrating that the site of translation initiation is an important new layer of regulating protein trafficking.


Assuntos
Anormalidades Congênitas/metabolismo , Proteínas Qa-SNARE/metabolismo , Motivos de Aminoácidos , Anormalidades Congênitas/genética , Fibroblastos/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Mutação , Biossíntese de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/genética
20.
Mol Genet Genomic Med ; 9(10): e1787, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34486251

RESUMO

BACKGROUND: Introduction of cell-free fetal DNA (cff-DNA) testing in maternal blood opened possibilities to improve the performance of combined first-trimester screening (cFTS) in terms of better detection of trisomies and lowering invasive testing rate. The use of new molecular methods, such as chromosomal microarray analysis (CMA) and next-generation sequencing (NGS), has shown benefits in prenatal diagnosis of chromosomal and genetic diseases, which are not detectable with cff-DNA screening, but require an invasive procedure. METHODS: The objective of this study was to evaluate prospectively during two years performance of CMA and NGS in high-risk pregnancies. Initially, we investigated 14,566 singleton pregnancies with cFTS. A total of 334 high-risk pregnancies were selected for CMA diagnostic performance evaluation and 28 cases of highly dysmorphic fetuses for NGS analysis. CMA study group was divided into two groups based on the indications for testing; group A patients with high-risk for trisomies after cFTS, but normal ultrasound and group B patients who met criteria for CMA as a first-tier diagnostic test. RESULTS: The diagnostic yield of CMA was overall 3.6% (1.6% in Group A and 6.0% in Group B). In NGS analysis group, we report diagnostic yield of 17.9%. CONCLUSION: The use of CMA in high-risk pregnancies is justified and provides relevant clinical information in 3.6% of the cases. NGS analysis in fetuses with multiple anomalies shows promising results, but more investigations are needed for a better understanding of practical applications of this molecular diagnosis method in prenatal settings.


Assuntos
Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Gravidez de Alto Risco/genética , Diagnóstico Pré-Natal/métodos , Ácidos Nucleicos Livres , Transtornos Cromossômicos/diagnóstico , Feminino , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/normas , Gravidez , Diagnóstico Pré-Natal/normas , Estudos Prospectivos , Medição de Risco , Ultrassonografia Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA