Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS One ; 19(2): e0297879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394072

RESUMO

Liquid chromatography purification of multiple recombinant proteins, in parallel, could catalyze research and discovery if the processes are fast and approach the robustness of traditional, "one-protein-at-a-time" purification. Here, we report an automated, four channel chromatography platform that we have designed and validated for parallelized protein purification at milligram scales. The device can purify up to four proteins (each with its own single column), has inputs for up to eight buffers or solvents that can be directed to any of the four columns via a network of software-driven valves, and includes an automated fraction collector with ten positions for 1.5 or 5.0 mL collection tubes and four positions for 50 mL collection tubes for each column output. The control software can be accessed either via Python scripting, giving users full access to all steps of the purification process, or via a simple-to-navigate touch screen graphical user interface that does not require knowledge of the command line or any programming language. Using our instrument, we report milligram-scale, parallelized, single-column purification of a panel of mammalian cell expressed coronavirus (SARS-CoV-2, HCoV-229E, HCoV-OC43, HCoV-229E) trimeric Spike and monomeric Receptor Binding Domain (RBD) antigens, and monoclonal antibodies targeting SARS-CoV-2 Spike (S) and Influenza Hemagglutinin (HA). We include a detailed hardware build guide, and have made the controlling software open source, to allow others to build and customize their own protein purifier systems.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano OC43 , Animais , SARS-CoV-2 , Proteínas Recombinantes/metabolismo , Software , Linguagens de Programação , Glicoproteína da Espícula de Coronavírus/metabolismo , Mamíferos
2.
Nat Biotechnol ; 42(2): 275-283, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37095349

RESUMO

Natural evolution must explore a vast landscape of possible sequences for desirable yet rare mutations, suggesting that learning from natural evolutionary strategies could guide artificial evolution. Here we report that general protein language models can efficiently evolve human antibodies by suggesting mutations that are evolutionarily plausible, despite providing the model with no information about the target antigen, binding specificity or protein structure. We performed language-model-guided affinity maturation of seven antibodies, screening 20 or fewer variants of each antibody across only two rounds of laboratory evolution, and improved the binding affinities of four clinically relevant, highly mature antibodies up to sevenfold and three unmatured antibodies up to 160-fold, with many designs also demonstrating favorable thermostability and viral neutralization activity against Ebola and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudoviruses. The same models that improve antibody binding also guide efficient evolution across diverse protein families and selection pressures, including antibiotic resistance and enzyme activity, suggesting that these results generalize to many settings.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Testes de Neutralização , Anticorpos Antivirais/genética , Anticorpos Neutralizantes/química , SARS-CoV-2/genética , Mutação
3.
Pathogens ; 12(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37242341

RESUMO

A multiplexed enzyme-linked immunosorbent assay (ELISA) that simultaneously measures antibody binding to multiple antigens can extend the impact of serosurveillance studies, particularly if the assay approaches the simplicity, robustness, and accuracy of a conventional single-antigen ELISA. Here, we report on the development of multiSero, an open-source multiplex ELISA platform for measuring antibody responses to viral infection. Our assay consists of three parts: (1) an ELISA against an array of proteins in a 96-well format; (2) automated imaging of each well of the ELISA array using an open-source plate reader; and (3) automated measurement of optical densities for each protein within the array using an open-source analysis pipeline. We validated the platform by comparing antibody binding to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antigens in 217 human sera samples, showing high sensitivity (0.978), specificity (0.977), positive predictive value (0.978), and negative predictive value (0.977) for classifying seropositivity, a high correlation of multiSero determined antibody titers with commercially available SARS-CoV-2 antibody tests, and antigen-specific changes in antibody titer dynamics upon vaccination. The open-source format and accessibility of our multiSero platform can contribute to the adoption of multiplexed ELISA arrays for serosurveillance studies, for SARS-CoV-2 and other pathogens of significance.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36657993

RESUMO

BACKGROUND AND OBJECTIVES: Anti-CD20 monoclonal antibody (mAb) B-cell depletion is a remarkably successful multiple sclerosis (MS) treatment. Chimeric antigen receptor (CAR)-T cells, which target antigens in a non-major histocompatibility complex (MHC)-restricted manner, can penetrate tissues more thoroughly than mAbs. However, a previous study indicated that anti-CD19 CAR-T cells can paradoxically exacerbate experimental autoimmune encephalomyelitis (EAE) disease. We tested anti-CD19 CAR-T cells in a B-cell-dependent EAE model that is responsive to anti-CD20 B-cell depletion similar to the clinical benefit of anti-CD20 mAb treatment in MS. METHODS: Anti-CD19 CAR-T cells or control cells that overexpressed green fluorescent protein were transferred into C57BL/6 mice pretreated with cyclophosphamide (Cy). Mice were immunized with recombinant human (rh) myelin oligodendrocyte protein (MOG), which causes EAE in a B-cell-dependent manner. Mice were evaluated for B-cell depletion, clinical and histologic signs of EAE, and immune modulation. RESULTS: Clinical scores and lymphocyte infiltration were reduced in mice treated with either anti-CD19 CAR-T cells with Cy or control cells with Cy, but not with Cy alone. B-cell depletion was observed in peripheral lymphoid tissue and in the CNS of mice treated with anti-CD19 CAR-T cells with Cy pretreatment. Th1 or Th17 populations did not differ in anti-CD19 CAR-T cell, control cell-treated animals, or Cy alone. DISCUSSION: In contrast to previous data showing that anti-CD19 CAR-T cell treatment exacerbated EAE, we observed that anti-CD19 CAR-T cells ameliorated EAE. In addition, anti-CD19 CAR-T cells thoroughly depleted B cells in peripheral tissues and in the CNS. However, the clinical benefit occurred independently of antigen specificity or B-cell depletion.


Assuntos
Encefalomielite Autoimune Experimental , Imunoterapia Adotiva , Animais , Humanos , Camundongos , Anticorpos Monoclonais , Antígenos CD19 , Autoimunidade , Sistema Nervoso Central , Encefalomielite Autoimune Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Glicoproteína Mielina-Oligodendrócito , Linfócitos T , Linfócitos B
5.
Nat Commun ; 13(1): 7630, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494335

RESUMO

Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of vascular leak are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to induce barrier dysfunction in vitro and vascular leak in vivo, independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-ß signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-ß signaling axis are required for S-mediated barrier dysfunction. Notably, we show that SARS-CoV-2 infection caused leak in vivo, which was reduced by inhibiting integrins. Our findings offer mechanistic insight into SARS-CoV-2-triggered vascular leak, providing a starting point for development of therapies targeting COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Células Endoteliais , Integrinas , Peptidil Dipeptidase A/genética , Fator de Crescimento Transformador beta
6.
Nat Chem Biol ; 18(11): 1270-1276, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36076082

RESUMO

Omicron and its subvariants have rendered most authorized monoclonal antibody-based treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ineffective, highlighting the need for biologics capable of overcoming SARS-CoV-2 evolution. These mostly ineffective antibodies target variable epitopes. Here we describe broad-spectrum SARS-CoV-2 inhibitors developed by tethering the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), to known non-neutralizing antibodies that target highly conserved epitopes in the viral spike protein. These inhibitors, called receptor-blocking conserved non-neutralizing antibodies (ReconnAbs), potently neutralize all SARS-CoV-2 variants of concern (VOCs), including Omicron. Neutralization potency is lost when the linker joining the binding and inhibitory ReconnAb components is severed. In addition, a bi-functional ReconnAb, made by linking ACE2 to a bi-specific antibody targeting two non-overlapping conserved epitopes, defined here, shows sub-nanomolar neutralizing activity against all VOCs, including Omicron and BA.2. Given their conserved targets and modular nature, ReconnAbs have the potential to act as broad-spectrum therapeutics against SARS-CoV-2 and other emerging pandemic diseases.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Antivirais/metabolismo , Peptidil Dipeptidase A/metabolismo , Epitopos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico
7.
PLoS Comput Biol ; 18(9): e1010052, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36126074

RESUMO

The sequencing of antibody repertoires of B-cells at increasing coverage and depth has led to the identification of vast numbers of immunoglobulin heavy and light chains. However, the size and complexity of these Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) datasets makes it difficult to perform exploratory analyses. To aid in data exploration, we have developed AIRRscape, an R Shiny-based interactive web browser application that enables B-cell receptor (BCR) and antibody feature discovery through comparisons among multiple repertoires. Using AIRR-seq data as input, AIRRscape starts by aggregating and sorting repertoires into interactive and explorable bins of germline V-gene, germline J-gene, and CDR3 length, providing a high-level view of the entire repertoire. Interesting subsets of repertoires can be quickly identified and selected, and then network topologies of CDR3 motifs can be generated for further exploration. Here we demonstrate AIRRscape using patient BCR repertoires and sequences of published monoclonal antibodies to investigate patterns of humoral immunity to three viral pathogens: SARS-CoV-2, HIV-1, and DENV (dengue virus). AIRRscape reveals convergent antibody sequences among datasets for all three pathogens, although HIV-1 antibody datasets display limited convergence and idiosyncratic responses. We have made AIRRscape available as a web-based Shiny application, along with code on GitHub to encourage its open development and use by immuno-informaticians, virologists, immunologists, vaccine developers, and other scientists that are interested in exploring and comparing multiple immune receptor repertoires.


Assuntos
Formação de Anticorpos , COVID-19 , Anticorpos Monoclonais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Receptores de Antígenos de Linfócitos B/genética , SARS-CoV-2/genética
8.
J Am Chem Soc ; 144(30): 13663-13672, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35876794

RESUMO

Many existing protein detection strategies depend on highly functionalized antibody reagents. A simpler and easier to produce class of detection reagent is highly desirable. We designed a single-component, recombinant, luminescent biosensor that can be expressed in laboratory strains of Escherichia coli and Saccharomyces cerevisiae. This biosensor is deployed in multiple homogeneous and immobilized assay formats to detect recombinant SARS-CoV-2 spike antigen and cultured virus. The chemiluminescent signal generated facilitates detection by an unaugmented cell phone camera. Binding-activated tandem split-enzyme (BAT) biosensors may serve as a useful template for diagnostics and reagents that detect SARS-CoV-2 antigens and other proteins of interest.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
Nat Struct Mol Biol ; 29(3): 229-238, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236990

RESUMO

Current COVID-19 vaccines and many clinical diagnostics are based on the structure and function of the SARS-CoV-2 spike ectodomain. Using hydrogen-deuterium exchange monitored by mass spectrometry, we have uncovered that, in addition to the prefusion structure determined by cryo-electron microscopy, this protein adopts an alternative conformation that interconverts slowly with the canonical prefusion structure. This new conformation-an open trimer-contains easily accessible receptor-binding domains. It exposes the conserved trimer interface buried in the prefusion conformation, thus exposing potential epitopes for pan-coronavirus antibody and ligand recognition. The population of this state and kinetics of interconversion are modulated by temperature, receptor binding, antibody binding, and sequence variants observed in the natural population. Knowledge of the structure and populations of this conformation will help improve existing diagnostics, therapeutics, and vaccines.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Vacinas contra COVID-19 , Microscopia Crioeletrônica , Epitopos , Humanos , Conformação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
10.
bioRxiv ; 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34931188

RESUMO

Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of this pathology are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to trigger barrier dysfunction in vitro and vascular leak in vivo , independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-ß signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-ß signaling axis are required for S-mediated barrier dysfunction. Our findings suggest that S interactions with barrier cells are a contributing factor to COVID-19 disease severity and offer mechanistic insight into SARS-CoV-2 triggered vascular leak, providing a starting point for development of therapies targeting COVID-19 pathogenesis.

12.
Sci Adv ; 7(31)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34330709

RESUMO

Interpretation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serosurveillance studies is limited by poorly defined performance of antibody assays over time in individuals with different clinical presentations. We measured antibody responses in plasma samples from 128 individuals over 160 days using 14 assays. We found a consistent and strong effect of disease severity on antibody magnitude, driven by fever, cough, hospitalization, and oxygen requirement. Responses to spike protein versus nucleocapsid had consistently higher correlation with neutralization. Assays varied substantially in sensitivity during early convalescence and time to seroreversion. Variability was dramatic for individuals with mild infection, who had consistently lower antibody titers, with sensitivities at 6 months ranging from 33 to 98% for commercial assays. Thus, the ability to detect previous infection by SARS-CoV-2 is highly dependent on infection severity, timing, and the assay used. These findings have important implications for the design and interpretation of SARS-CoV-2 serosurveillance studies.

13.
Nat Commun ; 12(1): 3566, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117227

RESUMO

Serosurveillance provides a unique opportunity to quantify the proportion of the population that has been exposed to pathogens. Here, we developed and piloted Serosurveillance for Continuous, ActionabLe Epidemiologic Intelligence of Transmission (SCALE-IT), a platform through which we systematically tested remnant samples from routine blood draws in two major hospital networks in San Francisco for SARS-CoV-2 antibodies during the early months of the pandemic. Importantly, SCALE-IT allows for algorithmic sample selection and rich data on covariates by leveraging electronic health record data. We estimated overall seroprevalence at 4.2%, corresponding to a case ascertainment rate of only 4.9%, and identified important heterogeneities by neighborhood, homelessness status, and race/ethnicity. Neighborhood seroprevalence estimates from SCALE-IT were comparable to local community-based surveys, while providing results encompassing the entire city that have been previously unavailable. Leveraging this hybrid serosurveillance approach has strong potential for application beyond this local context and for diseases other than SARS-CoV-2.


Assuntos
COVID-19/epidemiologia , Registros Eletrônicos de Saúde/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2/isolamento & purificação , São Francisco/epidemiologia , Estudos Soroepidemiológicos , Adulto Jovem
14.
medRxiv ; 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34013298

RESUMO

Serology has provided valuable diagnostic and epidemiological data on antibody responses to SARS-CoV-2 in diverse patient cohorts. Deployment of high content, multiplex serology platforms across the world, including in low and medium income countries, can accelerate longitudinal epidemiological surveys. Here we report multiSero, an open platform to enable multiplex serology with up to 48 antigens in a 96-well format. The platform consists of three components: ELISA-array of printed proteins, a commercial or home-built plate reader, and modular python software for automated analysis (pysero). We validate the platform by comparing antibody titers against the SARS-CoV-2 Spike, receptor binding domain (RBD), and nucleocapsid (N) in 114 sera from COVID-19 positive individuals and 87 pre-pandemic COVID-19 negative sera. We report data with both a commercial plate reader and an inexpensive, open plate reader (nautilus). Receiver operating characteristic (ROC) analysis of classification with single antigens shows that Spike and RBD classify positive and negative sera with the highest sensitivity at a given specificity. The platform distinguished positive sera from negative sera when the reactivity of the sera was equivalent to the binding of 1 ng mL âˆ'1 RBD-specific monoclonal antibody. We developed normalization and classification methods to pool antibody responses from multiple antigens and multiple experiments. Our results demonstrate a performant and accessible pipeline for multiplexed ELISA ready for multiple applications, including serosurveillance, identification of viral proteins that elicit antibody responses, differential diagnosis of circulating pathogens, and immune responses to vaccines.

15.
medRxiv ; 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33688675

RESUMO

Serosurveillance studies are critical for estimating SARS-CoV-2 transmission and immunity, but interpretation of results is currently limited by poorly defined variability in the performance of antibody assays to detect seroreactivity over time in individuals with different clinical presentations. We measured longitudinal antibody responses to SARS-CoV-2 in plasma samples from a diverse cohort of 128 individuals over 160 days using 14 binding and neutralization assays. For all assays, we found a consistent and strong effect of disease severity on antibody magnitude, with fever, cough, hospitalization, and oxygen requirement explaining much of this variation. We found that binding assays measuring responses to spike protein had consistently higher correlation with neutralization than those measuring responses to nucleocapsid, regardless of assay format and sample timing. However, assays varied substantially with respect to sensitivity during early convalescence and in time to seroreversion. Variations in sensitivity and durability were particularly dramatic for individuals with mild infection, who had consistently lower antibody titers and represent the majority of the infected population, with sensitivities often differing substantially from reported test characteristics (e.g., amongst commercial assays, sensitivity at 6 months ranged from 33% for ARCHITECT IgG to 98% for VITROS Total Ig). Thus, the ability to detect previous infection by SARS-CoV-2 is highly dependent on the severity of the initial infection, timing relative to infection, and the assay used. These findings have important implications for the design and interpretation of SARS-CoV-2 serosurveillance studies.

16.
Nano Lett ; 21(5): 2272-2280, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33635655

RESUMO

To effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach toward this end. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein. The presence of the SARS-CoV-2 spike protein elicits a robust, 2-fold nanosensor fluorescence increase within 90 min of spike protein exposure. We characterize the nanosensor stability and sensing mechanism and passivate the nanosensor to preserve sensing response in saliva and viral transport medium. We further demonstrate that these ACE2-SWCNT nanosensors retain sensing capacity in a surface-immobilized format, exhibiting a 73% fluorescence turn-on response within 5 s of exposure to 35 mg/L SARS-CoV-2 virus-like particles. Our data demonstrate that ACE2-SWCNT nanosensors can be developed into an optical tool for rapid SARS-CoV-2 detection.


Assuntos
Técnicas Biossensoriais/métodos , Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virologia , Nanotubos de Carbono , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/análise , Enzima de Conversão de Angiotensina 2/metabolismo , Antígenos Virais/análise , Humanos , Proteínas Imobilizadas/metabolismo , Nanotecnologia , Pandemias , Ligação Proteica , SARS-CoV-2/imunologia , Espectrometria de Fluorescência , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
ACS Cent Sci ; 7(1): 183-199, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33527087

RESUMO

The development of a safe and effective SARS-CoV-2 vaccine is a public health priority. We designed subunit vaccine candidates using self-assembling ferritin nanoparticles displaying one of two multimerized SARS-CoV-2 spikes: full-length ectodomain (S-Fer) or a C-terminal 70 amino-acid deletion (SΔC-Fer). Ferritin is an attractive nanoparticle platform for production of vaccines, and ferritin-based vaccines have been investigated in humans in two separate clinical trials. We confirmed proper folding and antigenicity of spike on the surface of ferritin by cryo-EM and binding to conformation-specific monoclonal antibodies. After a single immunization of mice with either of the two spike ferritin particles, a lentiviral SARS-CoV-2 pseudovirus assay revealed mean neutralizing antibody titers at least 2-fold greater than those in convalescent plasma from COVID-19 patients. Additionally, a single dose of SΔC-Fer elicited significantly higher neutralizing responses as compared to immunization with the spike receptor binding domain (RBD) monomer or spike ectodomain trimer alone. After a second dose, mice immunized with SΔC-Fer exhibited higher neutralizing titers than all other groups. Taken together, these results demonstrate that multivalent presentation of SARS-CoV-2 spike on ferritin can notably enhance elicitation of neutralizing antibodies, thus constituting a viable strategy for single-dose vaccination against COVID-19.

18.
Res Sq ; 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33564754

RESUMO

Serosurveillance provides a unique opportunity to quantify the proportion of the population that has been exposed to pathogens. Here, we developed and piloted Serosurveillance for Continuous, ActionabLe Epidemiologic Intelligence of Transmission (SCALE-IT), a platform through which we systematically tested remnant samples from routine blood draws in two major hospital networks in San Francisco for SARS-CoV-2 antibodies during the early months of the pandemic. Importantly, SCALE-IT allows for algorithmic sample selection and rich data on covariates by leveraging electronic medical record data. We estimated overall seroprevalence at 4.2%, corresponding to a case ascertainment rate of only 4.9%, and identified important heterogeneities by neighborhood, homelessness status, and race/ethnicity. Neighborhood seroprevalence estimates from SCALE-IT were comparable to local community-based surveys, while providing results encompassing the entire city that have been previously unavailable. Leveraging this hybrid serosurveillance approach has strong potential for application beyond this local context and for diseases other than SARS-CoV-2.

19.
medRxiv ; 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33173881

RESUMO

To effectively track and eliminate COVID-19, it is critical to develop tools for rapid and accessible diagnosis of actively infected individuals. Here, we introduce a single-walled carbon nanotube (SWCNT)-based optical sensing approach towards these ends. We construct a nanosensor based on SWCNTs noncovalently functionalized with ACE2, a host protein with high binding affinity for the SARS-CoV-2 spike protein. Presence of the SARS-CoV-2 spike protein elicits a robust, two-fold nanosensor fluorescence increase within 90 min of spike protein exposure. We characterize the nanosensor stability and sensing mechanism, and passivate the nanosensor to preserve sensing response in saliva and viral transport medium. We further demonstrate that these ACE2-SWCNT nanosensors retain sensing capacity in a surface-immobilized format, exhibiting a 73% fluorescence turn-on response within 5 s of exposure to 35 mg/L SARS-CoV-2 virus-like particles. Our data demonstrate that ACE2-SWCNT nanosensors can be developed into an optical tool for rapid SARS-CoV-2 detection.

20.
bioRxiv ; 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32869030

RESUMO

Development of a safe and effective SARS-CoV-2 vaccine is a public health priority. We designed subunit vaccine candidates using self-assembling ferritin nanoparticles displaying one of two multimerized SARS-CoV-2 spikes: full-length ectodomain (S-Fer) or a C-terminal 70 amino-acid deletion (SΔC-Fer). Ferritin is an attractive nanoparticle platform for production of vaccines and ferritin-based vaccines have been investigated in humans in two separate clinical trials. We confirmed proper folding and antigenicity of spike on the surface of ferritin by cryo-EM and binding to conformation-specific monoclonal antibodies. After a single immunization of mice with either of the two spike ferritin particles, a lentiviral SARS-CoV-2 pseudovirus assay revealed mean neutralizing antibody titers at least 2-fold greater than those in convalescent plasma from COVID-19 patients. Additionally, a single dose of SΔC-Fer elicited significantly higher neutralizing responses as compared to immunization with the spike receptor binding domain (RBD) monomer or spike ectodomain trimer alone. After a second dose, mice immunized with SΔC-Fer exhibited higher neutralizing titers than all other groups. Taken together, these results demonstrate that multivalent presentation of SARS-CoV-2 spike on ferritin can notably enhance elicitation of neutralizing antibodies, thus constituting a viable strategy for single-dose vaccination against COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA