RESUMO
BACKGROUND: Optic neuritis (ON) is a common manifestation of multiple sclerosis (MS) and myelin-oligodendrocyte-glycoprotein IgG-associated disease (MOGAD). This study evaluated the applicability of optical coherence tomography (OCT) for differentiating between both diseases in two independent cohorts. METHODS: One hundred sixty two patients from seven sites underwent standard OCT and high-contrast visual acuity (HCVA) testing at least 6 months after first ON. Of these, 100 patients (32 MOGAD, 68 MS) comprised the primary investigational cohort, while 62 patients (31 MOGAD, 31 MS) formed a validation cohort. A composite score distinguishing between MOGAD and MS was developed using multivariate logistic regression. RESULTS: Bilateral simultaneous ON occurred more frequently in MOGAD compared to MS (46.9 vs. 11.8%, p < 0.001). OCT revealed more peripapillary retinal nerve fiber layer (pRNFL) atrophy in all segments in MOGAD compared to predominantly temporal pRNFL atrophy in MS (p < 0.001). HCVA was better preserved in MS (p = 0.007). pRNFL thickness in all except for temporal segments was suitable for differentiating MOGAD and MS. Simultaneous bilateral ON and critical atrophy in nasal (< 58.5 µm) and temporal superior (< 105.5 µm) segments were included into the composite score as three independent predictors for MOGAD. The composite score distinguished MOGAD from MS with 75% sensitivity and 90% specificity in the investigational cohort, and 68% sensitivity and 87% specificity in the validation cohort. CONCLUSION: Following a single ON-episode, MOGAD exhibits more pronounced global pRNFL atrophy and lower visual acuity after ON compared to MS. The introduced OCT-based composite score enabled differentiation between the two entities across both cohorts.
RESUMO
BACKGROUND: Optic neuritis (ON) is the most prevalent manifestation of pediatric multiple sclerosis (MSped) and myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGADped) in children > 6 years. In this study, we investigated retinal atrophy patterns and diagnostic accuracy of optical coherence tomography (OCT) in differentiating between both diseases after the first ON episode. METHODS: Patients were retrospectively identified in eight tertial referral centers. OCT, VEP and high/low-contrast visual acuity (HCVA/LCVA) have been investigated > 6 months after the first ON. Prevalence of pathological OCT findings was identified based on data of 144 age-matched healthy controls. RESULTS: Thirteen MOGADped (10.7 ± 4.2 years, F:M 8:5, 21 ON eyes) and 21 MSped (14.3 ± 2.4 years, F:M 19:2, 24 ON eyes) patients were recruited. We observed a significantly more profound atrophy of both peripapillary and macular retinal nerve fiber layer in MOGADped compared to MSped (pRNFL global: 68.2 ± 16.9 vs. 89.4 ± 12.3 µm, p < 0.001; mRNFL: 0.12 ± 0.01 vs. 0.14 ± 0.01 mm3, p < 0.001). Neither other macular layers nor P100 latency differed. MOGADped developed global atrophy affecting all peripapillary segments, while MSped displayed predominantly temporal thinning. Nasal pRNFL allowed differentiation between both diseases with the highest diagnostic accuracy (AUC = 0.902, cutoff < 62.5 µm, 90.5% sensitivity and 70.8% specificity for MOGADped). OCT was also substantially more sensitive compared to VEP in identification of ON eyes in MOGAD (pathological findings in 90% vs. 14%, p = 0.016). CONCLUSION: First MOGAD-ON results in a more severe global peripapillary atrophy compared to predominantly temporal thinning in MS-ON. Nasal pRNFL allows differentiation between both diseases with the highest accuracy, supporting the additional diagnostic value of OCT in children with ON.