Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 14(5): 131, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38645793

RESUMO

In this investigation, cellulose-degrading fungi and bacteria were isolated from different partially decomposed cellulose-rich substrates, such as groundnut residues, rice straw, and rotten wood, following dilution plating techniques on carboxymethyl cellulose agar media and screening for potential cellulose degradation ability. The development of a clear halo zone surrounding the microbial colonies during the initial screening process using the Congo red test (20 isolates) suggested cellulose hydrolysis, and the highest cellulase production activity was implied by the isolates with the largest clear zone ratio (9 isolates). Using both macroscopic and microscopic examinations, as well as standard biochemical tests outlined in Bergey's Manual of Determinative Bacteriology, the genus-level identification of fungi and bacteria was accomplished. In order to molecularly identify the 4 isolated fungal and bacterial strains at the species level after being ultimately selected for cellulase production potential under in vitro studies, fungal and bacterial DNA was extracted and amplified by PCR using the universal primers ITS1 and ITS4 for fungi (ITS rRNA, 5.8S rRNA) and 8F and 1492R for bacterial isolates (16S rRNA). After sequencing, the PCR results were compared to other comparable sequences in GenBank (NCBI). Based on the available NCBI data, phylogenetic analysis of their ribosomal gene partial sequences revealed that DAJ2 (PP086700) shares 100% homology with Aspergillus foetidus, DTJ4 (PP086699) shares 99.74% similarity with Trichoderma atrobrunnium, DBJ6 (PP082584) shares 100% identity with Priestia megaterium, and DMB9 (PP082585) shares 99.88% homology with Micrococcus yunnanensis. The cellulolytic potential of Phanerochaete chrysosporium is well established. Therefore, it was considered a standard culture for comparison and was collected from the MTCC, Chandigarh, India. Overall, all 4 selected isolates and the check organism were mutually compatible or synergistic with each other, and their consortium is useful for the accelerated decomposition of organic constituents during rapid composting.

2.
Physiol Mol Biol Plants ; 29(5): 725-737, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37363420

RESUMO

Peanut is mostly grown in calcareous soils with high pH which are deficient in available iron (Fe2+) for plant uptake causing iron deficiency chlorosis (IDC). The most pertinent solution is to identify efficient genotypes showing tolerance to limited Fe availability in the soil. A field screening of 40 advanced breeding lines of peanut using NRCG 7472 and ICGV 86031 as IDC susceptible and tolerant checks, respectively, was envisaged for four years. PBS 22040 and 29,192 exhibited maximum tolerance while PBS 12215 and 12,185 were most susceptible. PBS 22040 accumulated maximum seed resveratrol (5.8 ± 0.08 ppm), ferulic acid (378.6 ± 0.31 ppm) and Fe (45.59 ± 0.41 ppm) content. Enhanced chlorophyll retention (8.72-9.50 µg ml-1), carotenoid accumulation (1.96-2.08 µg ml-1), and antioxidant enzyme activity (APX: 35.9-103.9%; POX: 51- 145%) reduced the MDA accumulation (5.61-9.11 µM cm-1) in tolerant lines. The overexpression of Fe transporters IRT1, ZIP5, YSL3 was recorded to the tune of 2.3-9.54; 1.45-3.7; 2.20-2.32- folds respectively in PBS 22040 and 29,192, over NRCG 7472. PBS 22040 recorded the maximum pod yield (282 ± 4.6 g/row), hundred kernel weight (55 ± 0.7 g) and number of pods per three plants (54 ± 1.7). The study thus reports new insights into the roles of resveratrol, ferulic acid and differential antioxidant enzyme activities in imparting IDC tolerance. PBS 22040, being the best performing line, can be the potent source of IDC tolerance for introgression in high yielding but susceptible genotypes under similar edaphic conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01321-9.

3.
Sci Rep ; 5: 12293, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26216440

RESUMO

Archaea are unique microorganisms that are present in ecological niches of high temperature, pH and salinity. A total of 157 archaea were obtained from thirteen sediment, water and rhizospheric soil samples collected from Rann of Kutch, Gujarat, India. With an aim to screen phosphate solubilizing archaea, a new medium was designed as Haloarchaea P Solubilization (HPS) medium. The medium supported the growth and P solubilization activity of archaea. Employing the HPS medium, twenty isolates showed the P-solubilization. Phosphate solubilizing archaea were identified as seventeen distinct species of eleven genera namely Haloarcula, Halobacterium, Halococcus, Haloferax, Halolamina, Halosarcina, Halostagnicola, Haloterrigena, Natrialba, Natrinema and Natronoarchaeum. Natrinema sp. strain IARI-WRAB2 was identified as the most efficient P-solubilizer (134.61 mg/L) followed by Halococcus hamelinensis strain IARI-SNS2 (112.56 mg/L). HPLC analysis detected seven different kinds of organic acids, namely: gluconic acid, citric acid, formic acid, fumaric acid succinic acid, propionic acid and tartaric acid from the cultures of these isolates. These phosphate solubilizing halophilic archaea may play a role in P nutrition to vegetation growing in these hypersaline soils. This is the first report for these haloarchaea to solubilize considerable amount of P by production of organic acids and lowering of pH.


Assuntos
Archaea/metabolismo , Fósforo/metabolismo , Cromatografia Líquida de Alta Pressão , Solubilidade
4.
Genome Announc ; 2(1)2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24407641

RESUMO

We report the 3.98-Mbp first draft genome sequence of Sediminibacillus halophilus strain NSP9.3, a moderate halophile isolated from a seasonal salt marsh of the Great Rann of Kutch, India. Exploring the genome of this organism will facilitate the understanding of the mechanism(s) of osmotolerance and survival in differential osmolarity.

5.
Genome Announc ; 2(1)2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24407642

RESUMO

The 4.37-Mbp draft genome of a moderately halophilic Bacillus megaterium strain, MSP20.1, isolated from a saltern of the Little Rann of Kutch, India, is reported here. To understand the mechanism(s) of moderate halophilism and to isolate the gene(s) involved in osmotolerance and adaptation, the genome of MSP20.1 was sequenced.

6.
Genome Announc ; 1(6)2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24356848

RESUMO

Here, we report the 4.0-Mbp draft genome of an obligate halophile, Bacillus sp. strain NSP22.2, isolated from a seasonal salt marsh of the Great Rann of Kutch, India. To understand the mechanism(s) of obligate halophilism and to isolate the relevant gene(s), the genome of Bacillus sp. NSP22.2 was sequenced.

7.
Genome Announc ; 1(6)2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24371204

RESUMO

We report the 3.93-Mbp first draft genome sequence of a species of the genus Thalassobacillus, Thalassobacillus devorans strain MSP14, a moderate but obligate halophile, isolated from a salt crystallizer of the Little Rann of Kutch, India. Exploring the genome of this organism will facilitate understanding the mechanism(s) of its obligate halophilism.

8.
Genome Announc ; 1(5)2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24115544

RESUMO

Here, we report the 4.46-Mbp draft genome sequence of Bacillus sp. strain SB47, an extreme halophile isolated from a salt pan of the Little Rann of Kutch, India. Exploring the genome of this organism will facilitate the understanding and isolation of the gene(s) involved in its extreme osmotolerance.

9.
Genome Announc ; 1(5)2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24115550

RESUMO

We report the 4.52-Mbp draft genome sequence of Bacillus sp. strain NSP9.1, a moderately halophilic bacterium isolated from the salt marsh of the Great Rann of Kutch, India. Analysis of the genome of this organism will lead to a better understanding of the genes and metabolic pathways involved in imparting osmotolerance.

10.
Genome Announc ; 1(5)2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24136852

RESUMO

Here we report the draft whole-genome sequence (3.72 Mbp) of Bacillus sp. strain SB49, an extremely halophilic bacterium isolated from a salt crystallizer pond of the Little Rann of Kutch in India. Unraveling the genome of this organism will facilitate understanding and isolation of the genes involved in imparting extreme osmotolerance.

11.
Genome Announc ; 1(5)2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24158559

RESUMO

The 5.52-Mbp draft genome sequence of Bacillus sp. strain NSP2.1, a nonhalophilic bacterium isolated from the salt marsh of the Great Rann of Kutch, India, is reported here. An analysis of the genome of this organism will facilitate the understanding of its survival in the salt marsh.

12.
Genome Announc ; 1(4)2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23833129

RESUMO

We report the 7.42-Mbp draft whole genome sequence of Salinibacillus aidingensis strain MSP4, an obligate halophilic bacterium, isolated from a salt crystallizer of the Rann of Kutch in India. Analysis of the genome of this organism will lead to a better understanding of the genes and metabolic pathways involved in imparting osmotolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA