Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bioinform Comput Biol ; 22(3): 2450009, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39030667

RESUMO

A turning point in cancer research is the introduction of massively parallel sequencing technology which greatly reduced the cost and time for genome sequencing. This enhanced the scope for detecting and analyzing the role of structural alterations in cancer. However, certain bias exists in NGS-based approaches, which badly affects the CNV identification process. Moreover, DNA repeats existing in CNV regions need special attention as they will degrade the performance of majority of the existing CNV detection tools, even after applying generalized bias correction method. This motivated this work, where a novel method has been designed to address the issue of DNA repeats and thereby mappability bias existing in regions of CNV. The method consists of three phases, where the first phase computes the alignment information of uniquely mapped DNA reads, considering the base quality and base mismatch parameters at nucleotide level precision. The second and the third phase use a novel approach to allocate the non-uniquely mapped reads to an optimal region of the DNA repeats based on a probabilistic membership model. The proposed method is capable of identifying CNVs present in coding, as well as non-coding region of the DNA, and is also capable of detecting CNVs existing in DNA repeat regions. The methodology achieves a sensitivity greater than [Formula: see text] during the performed simulations, and on real data, the detected variants are validated with the database of genomic variants, where the percentage overlap is also greater than 95%, and has achieved much better breakpoint prediction, as compared with other popular bias correction CNV detection methods.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Análise de Sequência de DNA/métodos , Algoritmos , Neoplasias/genética , DNA/genética , Sequências Repetitivas de Ácido Nucleico
2.
Artigo em Inglês | MEDLINE | ID: mdl-39084625

RESUMO

Objectives: Prevalence of irregular menstrual cycle ranges from 81.7% to 96.3%. Recent research suggested that homeopathy is one of the most popular choices for women with various gynecological disorders. This trial was aimed at differentiating individualized homeopathic medicinal products (IHMPs) from identical-looking placebos in the treatment of menstrual irregularities in early reproductive women. Design: Double-blind, randomized (1:1), two parallel arms, placebo-controlled trial. Setting: D. N. De Homoeopathic Medical College & Hospital, Kolkata, West Bengal, India. Subjects: Ninety-two females with menstrual irregularities. Interventions: Group verum (n = 46; IHMPs plus concomitant care) versus group control (n = 46; placebos plus concomitant care). Outcome Measures: Primary-The proportion of early reproductive females in whom menstrual irregularities can be corrected for consecutive three cycles; Secondary-Menstrual Distress Questionnaire (MDQ) total score; all of them were measured at baseline and every month, up to 4 months. Results: Intention-to-treat sample (n = 92) was analyzed. Group differences were examined by chi-squared tests with categorical outcomes, two-way repeated measure analysis of variance accounting for the time-effect interactions, and unpaired t-tests comparing the mean estimates obtained individually every month. The level of significance was set at p < 0.05 two-tailed. After 4 months of intervention, the group difference in the primary outcome was nonsignificant statistically-IHMPs: 22/46 v/s placebo: 24/46, chi-square (Yates corrected) = 0.043, p = 0.835. The improvement observed in the MDQ total score (F1,90 = 0.054, p = 0.816) and subscales scores were higher in the IHMPs group than in placebos, however statistically nonsignificant in most of the occasions, except for the behavioral change subscale (F1,90 = 0.029, p < 0.001). Pulsatilla nigricans was the most frequently prescribed medicine. Kent's Repertory and Zandvoort's Complete Repertory were the most frequently used repertories. No harm or serious adverse events were reported from either group. Conclusions: The analysis failed to demonstrate clearly that IHMPs were effective beyond placebos in all but one of the outcomes. More appropriate outcome measures may be sought for future trials. Clinical Trial Registration Number: CTRI/2022/04/041659.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38055361

RESUMO

The revolution in sequencing technologies has enabled human genomes to be sequenced at a very low cost and time leading to exponential growth in the availability of whole-genome sequences. However, the complete understanding of our genome and its association with cancer is a far way to go. Researchers are striving hard to detect new variants and find their association with diseases, which further gives rise to the need for aggregation of this Big Data into a common standard scalable platform. In this work, a database named Enlightenment has been implemented which makes the availability of genomic data integrated from eight public databases, and DNA sequencing profiles of H. sapiens in a single platform. Annotated results with respect to cancer specific biomarkers, pharmacogenetic biomarkers and its association with variability in drug response, and DNA profiles along with novel copy number variants are computed and stored, which are accessible through a web interface. In order to overcome the challenge of storage and processing of NGS technology-based whole-genome DNA sequences, Enlightenment has been extended and deployed to a flexible and horizontally scalable database HBase, which is distributed over a hadoop cluster, which would enable the integration of other omics data into the database for enlightening the path towards eradication of cancer.


Assuntos
Neoplasias , Nucleotídeos , Humanos , Genômica/métodos , Análise de Sequência de DNA/métodos , Neoplasias/genética , Biomarcadores , Sequenciamento de Nucleotídeos em Larga Escala
4.
Nat Commun ; 13(1): 5884, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202813

RESUMO

Targeted protein degradation (TPD) is a promising approach in drug discovery for degrading proteins implicated in diseases. A key step in this process is the formation of a ternary complex where a heterobifunctional molecule induces proximity of an E3 ligase to a protein of interest (POI), thus facilitating ubiquitin transfer to the POI. In this work, we characterize 3 steps in the TPD process. (1) We simulate the ternary complex formation of SMARCA2 bromodomain and VHL E3 ligase by combining hydrogen-deuterium exchange mass spectrometry with weighted ensemble molecular dynamics (MD). (2) We characterize the conformational heterogeneity of the ternary complex using Hamiltonian replica exchange simulations and small-angle X-ray scattering. (3) We assess the ubiquitination of the POI in the context of the full Cullin-RING Ligase, confirming experimental ubiquitinomics results. Differences in degradation efficiency can be explained by the proximity of lysine residues on the POI relative to ubiquitin.


Assuntos
Proteínas Culina , Simulação de Dinâmica Molecular , Proteínas Culina/metabolismo , Deutério , Lisina/metabolismo , Espectrometria de Massas , Proteólise , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
J Chem Inf Model ; 62(2): 309-323, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34990555

RESUMO

We present an extension of the alchemical transfer method (ATM) for the estimation of relative binding free energies of molecular complexes applicable to conventional, as well as scaffold-hopping, alchemical transformations. Named ATM-RBFE, the method is implemented in the free and open-source OpenMM molecular simulation package and aims to provide a simpler and more generally applicable route to the calculation of relative binding free energies than what is currently available. ATM-RBFE is based on sound statistical mechanics theory and a novel coordinate perturbation scheme designed to swap the positions of a pair of ligands such that one is transferred from the bulk solvent to the receptor binding site while the other moves simultaneously in the opposite direction. The calculation is conducted directly in a single solvent box with a system prepared with conventional setup tools, without splitting of electrostatic and nonelectrostatic transformations, and without pairwise soft-core potentials. ATM-RBFE is validated here against the absolute binding free energies of the SAMPL8 GDCC host-guest benchmark set and against protein-ligand benchmark sets that include complexes of the estrogen receptor ERα and those of the methyltransferase EZH2. In each case the method yields self-consistent and converged relative binding free energy estimates in agreement with absolute binding free energies and reference literature values, as well as experimental measurements.


Assuntos
Simulação de Dinâmica Molecular , Entropia , Ligantes , Ligação Proteica , Termodinâmica
7.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1531-1544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33206608

RESUMO

Gene regulatory networks are biologically robust, which imparts resilience to living systems against most external perturbations affecting them. However, there is a limit to this and disturbances beyond this limit can impart unwanted signalling on one or more master regulators in a network. Certain disturbances may affect the functioning of other constituent genes of the same network. In most cases, this phenomenon can have some effect on the functioning of the living organism. In this investigation, we have proposed a methodology to mitigate the effects of external perturbations on a genetic network using a proportional-integral-derivative controller. The proposed controller has been used to perturb one or more of the other unaffected master regulators such that the most affected gene/s of the network revert to their normal state. The only required condition of such type of manoeuvring is that there should be multiple master regulators in a network. The proposed technique has been experimented on a 10-gene DREAM4 benchmark network and also on a larger 20-gene network, where only downregulation has been considered due to data constraints. Simulation results indicate that the most vulnerable genes can be reverted to their normal expression levels in 10 out of the 16 simulations performed.


Assuntos
Redes Reguladoras de Genes , Simulação por Computador , Redes Reguladoras de Genes/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-32750860

RESUMO

Identifying intragenic as well as intergenic sequences of the DNA, having structural alterations, is a significantly important research area, since this may be the root cause of many neurological and autoimmune diseases, including cancer. Working with whole genome NGS data has provided a new insight in this regard, but has lead to huge explosion of data that is growing exponentially. Hence, the challenges lie in efficient means of storage and processing this big data. In this study, we have developed a novel segmentation algorithm, called GenSeg, and its parallel MapReduce based algorithm, called MR-GenSeg, for detecting copy number variations. In order to annotate CNVs (variants), segments formed by GenSeg/MR-GenSeg have been represented in a novel way using a binary tree, where each node is a CNV event. GenSeg considers each position specific data of whole genome DNA sequence, so that precise identification of breakpoints is possible. GenSeg/MR-GenSeg has been compared with twelve popular CNV detection algorithms, where it has outperformed the others in terms of sensitivity, and has achieved a good F-score value. MR-GenSeg has excelled in terms of SpeedUp, when compared with these algorithms. The effect of CNVs on immunoglobulin (IG) genes has also been analysed in this study. Availability: The source codes are available at https://github.com/rituparna-sinha/MapReduce-GENSEG.


Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Algoritmos , Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Genômica , Humanos , Software
9.
Arch Microbiol ; 204(1): 37, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34928429

RESUMO

Colicins are agents of allelopathic interactions produced by certain enterobacteria which give them a competitive advantage in the environment. These protein molecules are mostly encoded by plasmids. The colicin operon consists of the activity, immunity and the lysis genes. The activity protein is responsible for the killing activity, the immunity protein protects the producer cell from the lethal action of colicin and the lysis protein facilitates its release. Colicins are primarily composed of three domains, namely the receptor-binding domain, the translocation domain and the cytotoxic domain. The protein molecule binds to its cognate receptor on the target cell via the receptor-binding domain and undergoes translocation into the cell either via the Tol system or the Ton system. After gaining entry into the target cell, there are various mechanisms by which colicins exert their lethality. These comprise DNase activity, RNase activity and pore formation in the target cell membrane or peptidoglycan synthesis inhibition. This review gives a detailed insight into the structural and functional aspect of colicins and their mode of action. This knowledge is of immense significance because colicins are being considered as very useful alternatives to conventional antibiotics in the treatment of multidrug-resistant infections. Besides, they also have a negligible harmful impact on the commensals. Thus, before tapping their therapeutic potential, it is imperative to know their structure and mechanism of action in detail.


Assuntos
Colicinas , Membrana Celular , Colicinas/genética , Descoberta de Drogas , Óperon , Plasmídeos
10.
Bioorg Med Chem Lett ; 42: 128047, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33882273

RESUMO

The effect of rigidification of the n-butyl linker region of tetrahydroisoquinoline-containing D3R ligands via inclusion of an o-xylenyl motif was examined in this study. Generally, rigidification with an o-xylenyl linker group reduces D3R affinity and negatively impacts selectivity versus D2R for compounds possessing a 6-methoxy-1,2,3,4,-tetrahydroisoquinolin-7-ol primary pharmacophore group. However, D3R affinity appears to be regulated by the primary pharmacophore group and high affinity D3R ligands with 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline and 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline primary pharmacophore groups were identified. The results of this study also indicate that D3R selectivity versus the σ2R is dictated by the benzamide secondary pharmacophore group, this being facilitated with 4-substituted benzamides. Compounds 5s and 5t were identified as high affinity (Ki < 4 nM) D3R ligands. Docking studies revealed that the added phenyl ring moiety interacts with the Cys181 in D3R which partially accounts for the strong D3R affinity of the ligands.


Assuntos
Receptores de Dopamina D3/antagonistas & inibidores , Tetra-Hidroisoquinolinas/farmacologia , Xilenos/farmacologia , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Receptores de Dopamina D3/metabolismo , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/química , Xilenos/química
11.
IEEE/ACM Trans Comput Biol Bioinform ; 17(4): 1303-1316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30640623

RESUMO

The accurate reconstruction of gene regulatory networks for proper understanding of the intricacies of complex biological mechanisms still provides motivation for researchers. Due to accessibility of various gene expression data, we can now attempt to computationally infer genetic interactions. Among the established network inference techniques, S-system is preferred because of its efficiency in replicating biological systems though it is computationally more expensive. This provides motivation for us to develop a similar system with lesser computational load. In this work, we have proposed a novel methodology for reverse engineering of gene regulatory networks based on a new technique: half-system. Half-systems use half the number of parameters compared to S-systems and thus significantly reduce the computational complexity. We have implemented our proposed technique for reconstructing four benchmark networks from their corresponding temporal expression profiles: an 8-gene, a 10-gene, and two 20-gene networks. Being a new technique, to the best of our knowledge, there are no comparable results for this in the contemporary literature. Therefore, we have compared our results with those obtained from the contemporary literature using other methodologies, including the state-of-the-art method, GENIE3. The results obtained in this work stack favourably against the competition, even showing quantifiable improvements in some cases.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Transcriptoma/genética , Algoritmos , Modelos Genéticos
12.
PLoS One ; 14(9): e0222902, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31568493

RESUMO

Confined hydration and conformational flexibility are some of the challenges encountered for the rational design of selective antagonists of G-protein coupled receptors. We present a set of C3-substituted (-)-stepholidine derivatives as potent binders of the dopamine D3 receptor. The compounds are characterized biochemically, as well as by computer modeling using a novel molecular dynamics-based alchemical binding free energy approach which incorporates the effect of the displacement of enclosed water molecules from the binding site. The free energy of displacement of specific hydration sites is obtained using the Hydration Site Analysis method with explicit solvation. This work underscores the critical role of confined hydration and conformational reorganization in the molecular recognition mechanism of dopamine receptors and illustrates the potential of binding free energy models to represent these key phenomena.


Assuntos
Aminoácidos/química , Berberina/análogos & derivados , Antagonistas de Dopamina/química , Receptores de Dopamina D3/química , Água/química , Aminoácidos/metabolismo , Berberina/síntese química , Berberina/química , Sítios de Ligação , Antagonistas de Dopamina/síntese química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Receptores de Dopamina D3/antagonistas & inibidores , Receptores de Dopamina D3/metabolismo , Termodinâmica , Água/metabolismo
13.
J Chem Phys ; 151(12): 124116, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575187

RESUMO

We investigate the role of order/disorder transitions in alchemical simulations of protein-ligand absolute binding free energies. We show, in the context of a potential of mean force description, that for a benchmarking system (the complex of the L99A mutant of T4 lysozyme with 3-iodotoluene) and for a more challenging system relevant for medicinal applications (the complex of the farnesoid X receptor with inhibitor 26 from a recent D3R challenge) that order/disorder transitions can significantly hamper Hamiltonian replica exchange sampling efficiency and slow down the rate of equilibration of binding free energy estimates. We further show that our analytical model of alchemical binding combined with the formalism developed by Straub et al. for the treatment of order/disorder transitions of molecular systems can be successfully employed to analyze the transitions and help design alchemical schedules and soft-core functions that avoid or reduce the adverse effects of rare binding/unbinding transitions. The results of this work pave the way for the application of these techniques to the alchemical estimation with explicit solvation of hydration free energies and absolute binding free energies of systems undergoing order/disorder transitions.

14.
ACS Med Chem Lett ; 9(10): 990-995, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30344905

RESUMO

A series of analogues featuring a 6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol unit as the arylamine "head" group of a classical D3 antagonist core structure were synthesized and evaluated for affinity at dopamine D1, D2, and D3 receptors (D1R, D2R, D3R). The compounds generally displayed strong affinity for D3R with very good D3R selectivity. Docking studies at D2R and D3R crystal structures revealed that the molecules are oriented such that their arylamine units are positioned in the orthosteric binding pocket of D3R, with the arylamide "tail" units residing in the secondary binding pocket. Hydrogen bonding between Ser 182 and Tyr 365 at D3R stabilize extracellular loop 2 (ECL2), which in turn contributes to ligand binding by interacting with the "tail" units of the ligands in the secondary binding pocket. Similar interactions between ECL2 and the "tail" units were absent at D2R due to different positioning of the D2R loop region. The presence of multiple H-bonds with the phenol moiety of the headgroup of 7 and Ser192 accounts for its stronger D3R affinity as compared to the 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-containing analogue 8.

15.
J Theor Biol ; 445: 9-30, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29462626

RESUMO

A gene regulatory network discloses the regulatory interactions amongst genes, at a particular condition of the human body. The accurate reconstruction of such networks from time-series genetic expression data using computational tools offers a stiff challenge for contemporary computer scientists. This is crucial to facilitate the understanding of the proper functioning of a living organism. Unfortunately, the computational methods produce many false predictions along with the correct predictions, which is unwanted. Investigations in the domain focus on the identification of as many correct regulations as possible in the reverse engineering of gene regulatory networks to make it more reliable and biologically relevant. One way to achieve this is to reduce the number of incorrect predictions in the reconstructed networks. In the present investigation, we have proposed a novel scheme to decrease the number of false predictions by suitably combining several metaheuristic techniques. We have implemented the same using a dataset ensemble approach (i.e. combining multiple datasets) also. We have employed the proposed methodology on real-world experimental datasets of the SOS DNA Repair network of Escherichia coli and the IMRA network of Saccharomyces cerevisiae. Subsequently, we have experimented upon somewhat larger, in silico networks, namely, DREAM3 and DREAM4 Challenge networks, and 15-gene and 20-gene networks extracted from the GeneNetWeaver database. To study the effect of multiple datasets on the quality of the inferred networks, we have used four datasets in each experiment. The obtained results are encouraging enough as the proposed methodology can reduce the number of false predictions significantly, without using any supplementary prior biological information for larger gene regulatory networks. It is also observed that if a small amount of prior biological information is incorporated here, the results improve further w.r.t. the prediction of true positives.


Assuntos
Biologia Computacional , Escherichia coli/genética , Redes Reguladoras de Genes/fisiologia , Modelos Genéticos , Saccharomyces cerevisiae/genética , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Saccharomyces cerevisiae/metabolismo
16.
J Bioinform Comput Biol ; 15(4): 1750016, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28659000

RESUMO

Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.


Assuntos
Algoritmos , Biologia Computacional/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Redes Reguladoras de Genes , Modelos Genéticos , Redes Neurais de Computação , Regulação Bacteriana da Expressão Gênica
17.
J Comput Aided Mol Des ; 31(1): 29-44, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696239

RESUMO

As part of the SAMPL5 blinded experiment, we computed the absolute binding free energies of 22 host-guest complexes employing a novel approach based on the BEDAM single-decoupling alchemical free energy protocol with parallel replica exchange conformational sampling and the AGBNP2 implicit solvation model specifically customized to treat the effect of water displacement as modeled by the Hydration Site Analysis method with explicit solvation. Initial predictions were affected by the lack of treatment of ionic charge screening, which is very significant for these highly charged hosts, and resulted in poor relative ranking of negatively versus positively charged guests. Binding free energies obtained with Debye-Hückel treatment of salt effects were in good agreement with experimental measurements. Water displacement effects contributed favorably and very significantly to the observed binding affinities; without it, the modeling predictions would have grossly underestimated binding. The work validates the implicit/explicit solvation approach employed here and it shows that comprehensive physical models can be effective at predicting binding affinities of molecular complexes requiring accurate treatment of conformational dynamics and hydration.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Solventes/química , Água/química , Sítios de Ligação , Desenho de Fármacos , Humanos , Ligantes , Conformação Molecular , Ligação Proteica , Termodinâmica
19.
Scientifica (Cairo) ; 2016: 1060843, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27298752

RESUMO

We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.

20.
Adv Bioinformatics ; 2016: 5283937, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26989410

RESUMO

The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA