Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Rep (Amst) ; 21: e00308, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30788221

RESUMO

In addition to plant-derived, fungal pigments have become an alternative in respect to synthetic ones. Besides Monascus sp., several pigment-producing fungi do not have culture conditions well-established yet. In this research, media composition, light wavelength and co-culture were evaluated, results were reported in Absorbance Units per gram of biomass (AU/Bgr). For Fusarium oxysporum a C:N ratio above 7 was advantageous, using both complex and defined media; blue LED light increased the AU/Bgr value from 18013 to 344; co-culture did not enhance pigment production. In Aspergillus chevalieri a high C:N ratio with glucose as carbon source was ideal. When exposing cultures to light, UV and red light gave the highest pigmentation; moreover, differential UV-VIS spectra in all wavelengths suggested production of additional pigments. Particularly a pigment observed when cultured in green light was also found in co-culture with yeast and there was an improvement of AU/Bgr value of 52549%. This is the first report regarding light effect and co-culture for these fungi, as well as C:N ratio for A. chevalieri.

2.
Plant Cell Environ ; 39(1): 185-98, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26147561

RESUMO

The tagging-via-substrate approach designed for the capture of mammal prenylated proteins was adapted to Arabidopsis cell culture. In this way, proteins are in vivo tagged with an azide-modified farnesyl moiety and captured thanks to biotin alkyne Click-iT® chemistry with further streptavidin-affinity chromatography. Mass spectrometry analyses identified four small GTPases and ASG2 (ALTERED SEED GERMINATION 2), a protein previously associated to the seed germination gene network. ASG2 is a conserved protein in plants and displays a unique feature that associates WD40 domains and tetratricopeptide repeats. Additionally, we show that ASG2 has a C-terminal CaaX-box that is farnesylated in vitro. Protoplast transfections using CaaX prenyltransferase mutants show that farnesylation provokes ASG2 nucleus exclusion. Moreover, ASG2 interacts with DDB1 (DAMAGE DNA BINDING protein 1), and the subcellular localization of this complex depends on ASG2 farnesylation status. Finally, germination and root elongation experiments reveal that asg2 and the farnesyltransferase mutant era1 (ENHANCED RESPONSE TO ABSCISIC ACID (ABA) 1) behave in similar manners when exposed to ABA or salt stress. To our knowledge, ASG2 is the first farnesylated DWD (DDB1 binding WD40) protein related to ABA response in Arabidopsis that may be linked to era1 phenotypes.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Transducina/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Genes Reporter , Germinação , Dados de Sequência Molecular , Mutação , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Prenilação de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Transducina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA