Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 3(11): 100418, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020971

RESUMO

We describe construction of the synthetic yeast chromosome XI (synXI) and reveal the effects of redesign at non-coding DNA elements. The 660-kb synthetic yeast genome project (Sc2.0) chromosome was assembled from synthesized DNA fragments before CRISPR-based methods were used in a process of bug discovery, redesign, and chromosome repair, including precise compaction of 200 kb of repeat sequence. Repaired defects were related to poor centromere function and mitochondrial health and were associated with modifications to non-coding regions. As part of the Sc2.0 design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI, we show that these sites can facilitate induced extrachromosomal circular DNA (eccDNA) formation, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI contributes to our understanding of non-coding DNA elements, provides a useful tool for eccDNA study, and will inform future synthetic genome design.

2.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33737447

RESUMO

When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation between genomes [K. Palacios-Flores et al.Genetics 208, 1631-1641 (2018)]. The PMGL is precise and sensitive and, in contrast to most currently used algorithms, is nonstatistical in nature. Here we demonstrate the power of PMGL to refine and customize RGs. As a proof-of-concept, we refined different versions of the Saccharomyces cerevisiae RG. We applied the automatic PMGL pipeline to refine the genomes of microorganisms belonging to the three domains of life: the archaea Methanococcus maripaludis and Pyrococcus furiosus; the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis; and the eukarya Schizosaccharomyces pombe, Aspergillus oryzae, and several strains of Saccharomyces paradoxus. We analyzed the reference genome of the virus SARS-CoV-2 and previously published viral genomes from patients' samples with COVID-19. We performed a mutation-accumulation experiment in E. coli and show that the PMGL strategy can detect specific mutations generated at any desired step of the whole procedure. We propose that PMGL can be used as a final step for the refinement and customization of any haploid genome, independently of the strategies and algorithms used in its assembly.


Assuntos
Variação Genética , Genoma Microbiano , Genômica/métodos , SARS-CoV-2/genética , Algoritmos , Acúmulo de Mutações , Estudo de Prova de Conceito , Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 116(17): 8445-8450, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30962378

RESUMO

Genomes are dynamic structures. Different mechanisms participate in the generation of genomic rearrangements. One of them is nonallelic homologous recombination (NAHR). This rearrangement is generated by recombination between pairs of repeated sequences with high identity. We analyzed rearrangements mediated by repeated sequences located in different chromosomes. Such rearrangements generate chimeric chromosomes. Potential rearrangements were predicted by localizing interchromosomal identical repeated sequences along the nuclear genome of the Saccharomyces cerevisiae S288C strain. Rearrangements were identified by a PCR-based experimental strategy. PCR primers are located in the unique regions bordering each repeated region of interest. When the PCR is performed using forward primers from one chromosome and reverse primers from another chromosome, the break point of the chimeric chromosome structure is revealed. In all cases analyzed, the corresponding chimeric structures were found. Furthermore, the nucleotide sequence of chimeric structures was obtained, and the origin of the unique regions bordering the repeated sequence was located in the expected chromosomes, using the perfect-match genomic landscape strategy (PMGL). Several chimeric structures were searched in colonies derived from single cells. All of the structures were found in DNA isolated from each of the colonies. Our findings indicate that interchromosomal rearrangements that generate chimeric chromosomes are recurrent and occur, at a relatively high frequency, in cell populations of S. cerevisiae.


Assuntos
Cromossomos Fúngicos/genética , Rearranjo Gênico/genética , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Genômica , Modelos Genéticos , Reação em Cadeia da Polimerase , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA
4.
Proc Natl Acad Sci U S A ; 115(21): 5516-5521, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735690

RESUMO

The precise determination of de novo genetic variants has enormous implications across different fields of biology and medicine, particularly personalized medicine. Currently, de novo variations are identified by mapping sample reads from a parent-offspring trio to a reference genome, allowing for a certain degree of differences. While widely used, this approach often introduces false-positive (FP) results due to misaligned reads and mischaracterized sequencing errors. In a previous study, we developed an alternative approach to accurately identify single nucleotide variants (SNVs) using only perfect matches. However, this approach could be applied only to haploid regions of the genome and was computationally intensive. In this study, we present a unique approach, coverage-based single nucleotide variant identification (COBASI), which allows the exploration of the entire genome using second-generation short sequence reads without extensive computing requirements. COBASI identifies SNVs using changes in coverage of exactly matching unique substrings, and is particularly suited for pinpointing de novo SNVs. Unlike other approaches that require population frequencies across hundreds of samples to filter out any methodological biases, COBASI can be applied to detect de novo SNVs within isolated families. We demonstrate this capability through extensive simulation studies and by studying a parent-offspring trio we sequenced using short reads. Experimental validation of all 58 candidate de novo SNVs and a selection of non-de novo SNVs found in the trio confirmed zero FP calls. COBASI is available as open source at https://github.com/Laura-Gomez/COBASI for any researcher to use.


Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pais , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Software , Algoritmos , Criança , Humanos
5.
Genetics ; 208(4): 1631-1641, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29367403

RESUMO

We present a conceptually simple, sensitive, precise, and essentially nonstatistical solution for the analysis of genome variation in haploid organisms. The generation of a Perfect Match Genomic Landscape (PMGL), which computes intergenome identity with single nucleotide resolution, reveals signatures of variation wherever a query genome differs from a reference genome. Such signatures encode the precise location of different types of variants, including single nucleotide variants, deletions, insertions, and amplifications, effectively introducing the concept of a general signature of variation. The precise nature of variants is then resolved through the generation of targeted alignments between specific sets of sequence reads and known regions of the reference genome. Thus, the perfect match logic decouples the identification of the location of variants from the characterization of their nature, providing a unified framework for the detection of genome variation. We assessed the performance of the PMGL strategy via simulation experiments. We determined the variation profiles of natural genomes and of a synthetic chromosome, both in the context of haploid yeast strains. Our approach uncovered variants that have previously escaped detection. Moreover, our strategy is ideally suited for further refining high-quality reference genomes. The source codes for the automated PMGL pipeline have been deposited in a public repository.


Assuntos
Variação Genética , Genoma , Genômica , Haploidia , Cromossomos , Biologia Computacional , Simulação por Computador , Testes Genéticos , Genoma Fúngico , Genoma Humano , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Leveduras/genética
6.
Proc Natl Acad Sci U S A ; 108(37): 15294-9, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21876154

RESUMO

We have entered the era of individual genomic sequencing, and can already see exponential progress in the field. It is of utmost importance to exclude false-positive variants from reported datasets. However, because of the nature of the used algorithms, this task has not been optimized to the required level of precision. This study presents a unique strategy for identifying SNPs, called COIN-VGH, that largely minimizes the presence of false-positives in the generated data. The algorithm was developed using the X-chromosome-specific regions from the previously sequenced genomes of Craig Venter and James Watson. The algorithm is based on the concept that a nucleotide can be individualized if it is analyzed in the context of its surrounding genomic sequence. COIN-VGH consists of defining the most comprehensive set of nucleotide strings of a defined length that map with 100% identity to a unique position within the human reference genome (HRG). Such set is used to retrieve sequence reads from a query genome (QG), allowing the production of a genomic landscape that represents a draft HRG-guided assembly of the QG. This landscape is analyzed for specific signatures that indicate the presence of SNPs. The fidelity of the variation signature was assessed using simulation experiments by virtually altering the HRG at defined positions. Finally, the signature regions identified in the HRG and in the QG reads are aligned and the precise nature and position of the corresponding SNPs are detected. The advantages of COIN-VGH over previous algorithms are discussed.


Assuntos
Simulação por Computador , Genoma Humano/genética , Hibridização de Ácido Nucleico/métodos , Nucleotídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Cromossomos Humanos X/genética , Sondas de DNA/metabolismo , Humanos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA