Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 128, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773499

RESUMO

BACKGROUND: Cellular iron homeostasis is regulated by iron regulatory proteins (IRP1 and IRP2) that sense iron levels (and other metabolic cues) and modulate mRNA translation or stability via interaction with iron regulatory elements (IREs). IRP2 is viewed as the primary regulator in the liver, yet our previous datasets showing diurnal rhythms for certain IRE-containing mRNAs suggest a nuanced temporal control mechanism. The purpose of this study is to gain insights into the daily regulatory dynamics across IRE-bearing mRNAs, specific IRP involvement, and underlying systemic and cellular rhythmicity cues in mouse liver. RESULTS: We uncover high-amplitude diurnal oscillations in the regulation of key IRE-containing transcripts in the liver, compatible with maximal IRP activity at the onset of the dark phase. Although IRP2 protein levels also exhibit some diurnal variations and peak at the light-dark transition, ribosome profiling in IRP2-deficient mice reveals that maximal repression of target mRNAs at this timepoint still occurs. We further find that diurnal regulation of IRE-containing mRNAs can continue in the absence of a functional circadian clock as long as feeding is rhythmic. CONCLUSIONS: Our findings suggest temporally controlled redundancy in IRP activities, with IRP2 mediating regulation of IRE-containing transcripts in the light phase and redundancy, conceivably with IRP1, at dark onset. Moreover, we highlight the significance of feeding-associated signals in driving rhythmicity. Our work highlights the dynamic nature and regulatory complexity in a metabolic pathway that had previously been considered well-understood.


Assuntos
Ritmo Circadiano , Proteína 1 Reguladora do Ferro , Proteína 2 Reguladora do Ferro , Ferro , Fígado , RNA Mensageiro , Animais , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Ritmo Circadiano/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Camundongos , Fígado/metabolismo , Ferro/metabolismo , Regulação da Expressão Gênica , Elementos de Resposta , Camundongos Endogâmicos C57BL , Masculino , Comportamento Alimentar
2.
Sci Adv ; 8(40): eabq4469, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36197975

RESUMO

Iron is mostly devoted to the hemoglobinization of erythrocytes for oxygen transport. However, emerging evidence points to a broader role for the metal in hematopoiesis, including the formation of the immune system. Iron availability in mammalian cells is controlled by iron-regulatory protein 1 (IRP1) and IRP2. We report that global disruption of both IRP1 and IRP2 in adult mice impairs neutrophil development and differentiation in the bone marrow, yielding immature neutrophils with abnormally high glycolytic and autophagic activity, resulting in neutropenia. IRPs promote neutrophil differentiation in a cell intrinsic manner by securing cellular iron supply together with transcriptional control of neutropoiesis to facilitate differentiation to fully mature neutrophils. Unlike neutrophils, monocyte count was not affected by IRP and iron deficiency, suggesting a lineage-specific effect of iron on myeloid output. This study unveils the previously unrecognized importance of IRPs and iron metabolism in the formation of a major branch of the innate immune system.


Assuntos
Medula Óssea , Neutrófilos , Animais , Medula Óssea/metabolismo , Hematopoese , Hemoglobinas/metabolismo , Homeostase , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Mamíferos/metabolismo , Camundongos , Neutrófilos/metabolismo , Oxigênio/metabolismo
5.
Mol Cell ; 67(6): 962-973.e5, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28918898

RESUMO

In the endoplasmic reticulum (ER), Ero1 catalyzes disulfide bond formation and promotes glutathione (GSH) oxidation to GSSG. Since GSSG cannot be reduced in the ER, maintenance of the ER glutathione redox state and levels likely depends on ER glutathione import and GSSG export. We used quantitative GSH and GSSG biosensors to monitor glutathione import into the ER of yeast cells. We found that glutathione enters the ER by facilitated diffusion through the Sec61 protein-conducting channel, while oxidized Bip (Kar2) inhibits transport. Increased ER glutathione import triggers H2O2-dependent Bip oxidation through Ero1 reductive activation, which inhibits glutathione import in a negative regulatory loop. During ER stress, transport is activated by UPR-dependent Ero1 induction, and cytosolic glutathione levels increase. Thus, the ER redox poise is tuned by reciprocal control of glutathione import and Ero1 activation. The ER protein-conducting channel is permeable to small molecules, provided the driving force of a concentration gradient.


Assuntos
Retículo Endoplasmático/enzimologia , Proteínas Fúngicas/metabolismo , Glutationa/metabolismo , Glicoproteínas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Canais de Translocação SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citosol/enzimologia , Difusão Facilitada , Proteínas Fúngicas/genética , Dissulfeto de Glutationa/metabolismo , Glicoproteínas/genética , Proteínas de Choque Térmico HSP70/genética , Peróxido de Hidrogênio/metabolismo , Membranas Intracelulares/enzimologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Canais de Translocação SEC/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Tempo , Resposta a Proteínas não Dobradas
6.
Nat Commun ; 8: 14791, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28337980

RESUMO

Yeast lacks dedicated photoreceptors; however, blue light still causes pronounced oscillations of the transcription factor Msn2 into and out of the nucleus. Here we show that this poorly understood phenomenon is initiated by a peroxisomal oxidase, which converts light into a hydrogen peroxide (H2O2) signal that is sensed by the peroxiredoxin Tsa1 and transduced to thioredoxin, to counteract PKA-dependent Msn2 phosphorylation. Upon H2O2, the nuclear retention of PKA catalytic subunits, which contributes to delayed Msn2 nuclear concentration, is antagonized in a Tsa1-dependent manner. Conversely, peroxiredoxin hyperoxidation interrupts the H2O2 signal and drives Msn2 oscillations by superimposing on PKA feedback regulation. Our data identify a mechanism by which light could be sensed in all cells lacking dedicated photoreceptors. In particular, the use of H2O2 as a second messenger in signalling is common to Msn2 oscillations and to light-induced entrainment of circadian rhythms and suggests conserved roles for peroxiredoxins in endogenous rhythms.


Assuntos
Peróxido de Hidrogênio/metabolismo , Transdução de Sinal Luminoso , Peroxidases/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Biocatálise/efeitos da radiação , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Luz , Transdução de Sinal Luminoso/efeitos da radiação , Modelos Biológicos , Fosforilação/efeitos da radiação , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos da radiação , Saccharomyces cerevisiae/efeitos da radiação
7.
Cell ; 166(1): 140-51, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27264606

RESUMO

Caloric restriction (CR) extends the lifespan of flies, worms, and yeast by counteracting age-related oxidation of H2O2-scavenging peroxiredoxins (Prxs). Here, we show that increased dosage of the major cytosolic Prx in yeast, Tsa1, extends lifespan in an Hsp70 chaperone-dependent and CR-independent manner without increasing H2O2 scavenging or genome stability. We found that Tsa1 and Hsp70 physically interact and that hyperoxidation of Tsa1 by H2O2 is required for the recruitment of the Hsp70 chaperones and the Hsp104 disaggregase to misfolded and aggregated proteins during aging, but not heat stress. Tsa1 counteracted the accumulation of ubiquitinated aggregates during aging and the reduction of hyperoxidized Tsa1 by sulfiredoxin facilitated clearance of H2O2-generated aggregates. The data reveal a conceptually new role for H2O2 signaling in proteostasis and lifespan control and shed new light on the selective benefits endowed to eukaryotic peroxiredoxins by their reversible hyperoxidation.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Peróxido de Hidrogênio/metabolismo , Longevidade , Peroxidases/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Restrição Calórica , Instabilidade Genômica , Proteínas de Choque Térmico/metabolismo , Humanos , Oxirredução , Agregados Proteicos , Saccharomyces cerevisiae/citologia , Transdução de Sinais
8.
Antioxid Redox Signal ; 14(11): 2071-80, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21083423

RESUMO

Peroxiredoxins constitute a major family of cysteine-based peroxide-scavenging enzymes. They carry an intriguing redox switch by undergoing substrate-mediated inactivation via overoxidation of their catalytic cysteine to the sulfinic acid form that is reverted by reduction catalyzed by the sulfinic acid reductase sulfiredoxin (Srx). The biological significance of such inactivation is not understood, nor is the function of Srx1. To address this question, we generated a mouse line with a null deletion of the Srx1-encoding Srxn1 gene. We show here that Srxn1(-/-) mice are perfectly viable and do not suffer from any apparent defects under laboratory conditions, but have an abnormal response to lipopolysaccharide that manifests by increased mortality during endotoxic shock. Microarray-based mRNA profiles show that although the response of Srxn1(-/-) mice to lipopolysaccharide is typical, spanning all spectrum and all pathways of innate immunity, it is delayed by several hours and remains intense when the response of Srxn1(+/+) mice has already dissipated. These data indicate that Srx1 activity protects mice from the lethality of endotoxic shock, adding this enzyme to other host factors, as NRF2 and peroxiredoxin 2, which by regulating cellular reactive oxygen species levels act as important modifiers in the pathogenesis of sepsis.


Assuntos
Lipopolissacarídeos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Choque Séptico/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Células Cultivadas , Feminino , Engenharia Genética , Proteínas de Homeodomínio/metabolismo , Imunidade Inata , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Espécies Reativas de Oxigênio/metabolismo , Choque Séptico/imunologia , Transdução de Sinais , Transcrição Gênica
9.
Circulation ; 117(14): 1778-86, 2008 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-18378612

RESUMO

BACKGROUND: Ca(2+) release from the sarcoplasmic reticulum via the ryanodine receptor (RyR2) activates cardiac myocyte contraction. An important regulator of RyR2 function is FKBP12.6, which stabilizes RyR2 in the closed state during diastole. Beta-adrenergic stimulation has been suggested to dissociate FKBP12.6 from RyR2, leading to diastolic sarcoplasmic reticulum Ca(2+) leakage and ventricular tachycardia (VT). We tested the hypothesis that FKBP12.6 overexpression in cardiac myocytes can reduce susceptibility to VT in stress conditions. METHODS AND RESULTS: We developed a mouse model with conditional cardiac-specific overexpression of FKBP12.6. Transgenic mouse hearts showed a marked increase in FKBP12.6 binding to RyR2 compared with controls both at baseline and on isoproterenol stimulation (0.2 mg/kg i.p.). After pretreatment with isoproterenol, burst pacing induced VT in 10 of 23 control mice but in only 1 of 14 transgenic mice (P<0.05). In isolated transgenic myocytes, Ca(2+) spark frequency was reduced by 50% (P<0.01), a reduction that persisted under isoproterenol stimulation, whereas the sarcoplasmic reticulum Ca(2+) load remained unchanged. In parallel, peak I(Ca,L) density decreased by 15% (P<0.01), and the Ca(2+) transient peak amplitude decreased by 30% (P<0.001). A 33.5% prolongation of the caffeine-evoked Ca(2+) transient decay was associated with an 18% reduction in the Na(+)-Ca(2+) exchanger protein level (P<0.05). CONCLUSIONS: Increased FKBP12.6 binding to RyR2 prevents triggered VT in normal hearts in stress conditions, probably by reducing diastolic sarcoplasmic reticulum Ca(2+) leak. This indicates that the FKBP12.6-RyR2 complex is an important candidate target for pharmacological prevention of VT.


Assuntos
Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Taquicardia Ventricular/prevenção & controle , Proteínas de Ligação a Tacrolimo/fisiologia , Potenciais de Ação , Agonistas Adrenérgicos beta/toxicidade , Animais , Sinalização do Cálcio , Estimulação Cardíaca Artificial , Catecolaminas/fisiologia , Doxiciclina/farmacologia , Isoproterenol/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Miocárdica , Fosforilação , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Retículo Sarcoplasmático/metabolismo , Proteínas de Ligação a Tacrolimo/biossíntese , Proteínas de Ligação a Tacrolimo/genética , Regulação para Cima/efeitos dos fármacos
10.
J Biotechnol ; 116(2): 145-51, 2005 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-15664078

RESUMO

Functional genomic analysis is a challenging step in the so-called post-genomic field. Identification of potential targets using large-scale gene expression analysis requires functional validation to identify those that are physiologically relevant. Genetically modified cell models are often used for this purpose allowing up- or down-expression of selected targets in a well-defined and if possible highly differentiated cell type. However, the generation of such models remains time-consuming and expensive. In order to alleviate this step, we developed a strategy aimed at the rapid and efficient generation of genetically modified cell lines with conditional, inducible expression of various target genes. Efficient knock-in of various constructs, called targeted transgenesis, in a locus selected for its permissibility to the tet inducible system, was obtained through the stimulation of site-specific homologous recombination by the meganuclease I-SceI. Our results demonstrate that targeted transgenesis in a reference inducible locus greatly facilitated the functional analysis of the selected recombinant cells. The efficient screening strategy we have designed makes possible automation of the transfection and selection steps. Furthermore, this strategy could be applied to a variety of highly differentiated cells.


Assuntos
Mapeamento Cromossômico/métodos , Células Epiteliais/fisiologia , Perfilação da Expressão Gênica/métodos , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Proteínas Recombinantes/biossíntese , Animais , Diferenciação Celular/genética , Linhagem Celular , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA