Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 285(10): 7384-93, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20048148

RESUMO

Pro-lysyl oxidase is secreted as a 50-kDa proenzyme and is then cleaved to a 30-kDa mature enzyme (lysyl oxidase (LOX)) and an 18-kDa propeptide (lysyl oxidase propeptide (LOX-PP)). The presence of LOX-PP in the cell layers of phenotypically normal osteoblast cultures led us to investigate the effects of LOX-PP on osteoblast differentiation. Data indicate that LOX-PP inhibits terminal mineralization in primary calvaria osteoblast cultures when added at early stages of differentiation, with no effects seen when present at later stages. LOX-PP was found to inhibit serum- and FGF-2-stimulated DNA synthesis and FGF-2-stimulated cell growth. Enzyme-linked immunosorbent assay and Western blot analyses show that LOX-PP inhibits FGF-2-induced ERK1/2 phosphorylation, signaling events that mediate the FGF-2-induced proliferative response. LOX-PP inhibits FGF-2-stimulated phosphorylation of FRS2alpha and FGF-2-stimulated DNA synthesis, even after inhibition of sulfation of heparan sulfate proteoglycans. These data point to a LOX-PP target at or near the level of fibroblast growth factor receptor binding or activation. Ligand binding assays on osteoblast cell layers with (125)I-FGF-2 demonstrate a concentration-dependent inhibition of FGF-2 binding to osteoblasts by LOX-PP. In vitro binding assays with recombinant fibroblast growth factor receptor protein revealed that LOX-PP inhibits FGF-2 binding in an uncompetitive manner. We propose a working model for the respective roles of LOX enzyme and LOX-PP in osteoblast phenotype development in which LOX-PP may act to inhibit the proliferative response possibly to allow cells to exit from the cell cycle and progress to the next stages of differentiation.


Assuntos
Proliferação de Células , Fator 2 de Crescimento de Fibroblastos/metabolismo , Osteoblastos/fisiologia , Precursores de Proteínas/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Transdução de Sinais/fisiologia , Células 3T3 , Animais , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/fisiologia , Bovinos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , DNA/biossíntese , Fator 2 de Crescimento de Fibroblastos/genética , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/fisiologia , Precursores de Proteínas/genética , Precursores de Proteínas/farmacologia , Proteína-Lisina 6-Oxidase/genética , Ensaio Radioligante , Ratos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Crânio/citologia
2.
Biochem Biophys Res Commun ; 366(1): 156-61, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18060869

RESUMO

Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-alpha-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.


Assuntos
Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Peptídeos/administração & dosagem , Proteína-Lisina 6-Oxidase/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
3.
J Biol Chem ; 282(21): 15416-29, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17428796

RESUMO

Prostaglandin E(2) blocks transforming growth factor TGF beta1-induced CCN2/CTGF expression in lung and kidney fibroblasts. PGE(2) levels are high in gingival tissues yet CCN2/CTGF expression is elevated in fibrotic gingival overgrowth. Gingival fibroblast expression of CCN2/CTGF in the presence of PGE(2) led us to compare the regulation of CCN2/CTGF expression in fibroblasts cultured from different tissues. Data demonstrate that the TGFbeta1-induced expression of CCN2/CTGF in human lung and renal mesangial cells is inhibited by 10 nm PGE(2), whereas human gingival fibroblasts are resistant. Ten nm PGE(2) increases cAMP accumulation in lung but not gingival fibroblasts, which require 1 mum PGE(2) to elevate cAMP. Micromolar PGE(2) only slightly reduces the TGFbeta1-stimulated CCN2/CTGF levels in gingival cells. EP2 prostaglandin receptor activation with butaprost blocks the TGFbeta1-stimulated expression of CCN2/CTGF expression in lung, but not gingival, fibroblasts. In lung fibroblasts, inhibition of the TGFbeta1-stimulated CCN2/CTGF by PGE(2), butaprost, or forskolin is due to p38, ERK, and JNK MAP kinase inhibition that is cAMP-dependent. Inhibition of any two MAPKs completely blocks CCN2/CTGF expression stimulated by TGFbeta1. These data mimic the inhibitory effects of 10 nm PGE(2) and forskolin that were dependent on PKA activity. In gingival fibroblasts, the sole MAPK mediating the TGFbeta1-stimulated CCN2/CTGF expression is JNK. Whereas forskolin reduces TGFbeta1-stimulated expression of CCN2/CTGF by 35% and JNK activation in gingival fibroblasts, micromolar PGE(2)-stimulated JNK in gingival fibroblasts and opposes the inhibitory effects of cAMP on CCN2/CTGF expression. Stimulation of the EP3 receptor with sulprostone results in a robust increase in JNK activation in these cells. Taken together, data identify two mechanisms by which TGFbeta1-stimulated CCN2/CTGF levels in human gingival fibroblasts resist down-regulation by PGE(2): (i) cAMP cross-talk with MAPK pathways is limited in gingival fibroblasts; (ii) PGE(2) activation of the EP3 prostanoid receptor stimulates the activation of JNK.


Assuntos
AMP Cíclico/metabolismo , Dinoprostona/farmacologia , Fibroblastos/metabolismo , Gengiva/metabolismo , Proteínas Imediatamente Precoces/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores de Prostaglandina E/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Adulto , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Células Cultivadas , Colforsina/farmacologia , Fator de Crescimento do Tecido Conjuntivo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Fibroblastos/citologia , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Gengiva/citologia , Humanos , Pulmão/citologia , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Especificidade de Órgãos/fisiologia , Receptores de Prostaglandina E Subtipo EP3 , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Am J Physiol Cell Physiol ; 292(6): C2095-102, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17287363

RESUMO

Lysyl oxidase plays a critical role in the formation of the extracellular matrix, and its activity is required for the normal maturation and cross-linking of collagen and elastin. An 18-kDa lysyl oxidase propeptide (LOPP) is generated from 50-kDa prolysyl oxidase by extracellular proteolytic cleavage during the biosynthesis of active 30-kDa lysyl oxidase enzyme. The fate and the functions of the LOPP are largely unknown, although intact LOPP was previously observed in osteoblast cultures. We investigated the spatial localization of molecular forms of lysyl oxidase, including LOPP in proliferating and differentiating osteoblasts, by using confocal immunofluorescence microscopy and Western blots of cytoplasmic and nuclear extracts. In the present study, a stage-dependent intracellular distribution of LOPP in the osteoblastic cell was observed. In proliferating osteoblasts, LOPP epitopes were principally associated with the Golgi and endoplasmic reticulum, and mature lysyl oxidase epitopes were found principally in the nucleus and perinuclear region. In differentiating cells, LOPP and mature lysyl oxidase immunostaining showed clear colocalization with the microtubule network. The subcellular distribution of LOPP and its temporal and physical association with microtubules were confirmed by Western blot and far Western blot studies. We also report that N-glycosylated and nonglycosylated LOPP are present in MC3T3-E1 cell cultures. We conclude that LOPP has a stage-dependent intracellular distribution in osteoblastic cells. Future studies are needed to investigate whether the LOPP associations with microtubules or the osteoblast nucleus have functional effects for osteoblast differentiation and bone formation.


Assuntos
Osteoblastos/citologia , Osteoblastos/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Células 3T3 , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação Enzimológica da Expressão Gênica , Camundongos , Transporte Proteico , Proteína-Lisina 6-Oxidase/genética , Tubulina (Proteína)
5.
Cancer Res ; 67(3): 1105-12, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17283144

RESUMO

Expression of the lysyl oxidase gene (LOX) was found to inhibit the transforming activity of the ras oncogene in NIH 3T3 fibroblasts and was hence named the ras recision gene (rrg). Lysyl oxidase (LOX) is synthesized and secreted as a 50-kDa inactive proenzyme (Pro-LOX), which is processed by proteolytic cleavage to a functional 32-kDa enzyme and an 18-kDa propeptide (LOX-PP). Recently, the ras recision activity of the LOX gene in NIH 3T3 cells was mapped to its propeptide region. Here, we show for the first time that LOX-PP inhibits transformation of breast cancer cells driven by Her-2/neu, an upstream activator of Ras. LOX-PP expression in Her-2/neu-driven breast cancer cells in culture suppressed Akt, extracellular signal-regulated kinase, and nuclear factor-kappaB activation. Her-2/neu-induced epithelial to mesenchymal transition was reverted by LOX-PP, as judged by reduced levels of Snail and vimentin; up-regulation of E-cadherin, gamma-catenin, and estrogen receptor alpha; and decreased ability to migrate or to form branching colonies in Matrigel. Furthermore, LOX-PP inhibited Her-2/neu tumor formation in a nude mouse xenograft model. Thus, LOX-PP inhibits signaling cascades induced by Her-2/neu that promote a more invasive phenotype and may provide a novel avenue for treatment of Her-2/neu-driven breast carcinomas.


Assuntos
Precursores Enzimáticos/metabolismo , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Receptor ErbB-2/metabolismo , Animais , Adesão Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Camundongos , Células NIH 3T3 , Fenótipo , Transdução de Sinais
6.
J Cell Physiol ; 203(1): 111-7, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15368541

RESUMO

The deposition of insoluble functional collagen occurs following extracellular proteolytic processing of procollagens by procollagen N- and C-proteinases, fibril formation, and lysyl oxidase dependent cross-linking. Procollagen C-proteinases in addition process and activate lysyl oxidase. The present study evaluates a possible role for procollagen C-proteinases in controlling different aspects of collagen deposition in vitro. Studies determine whether inhibition of procollagen C-proteinase activity with a specific BMP-1 inhibitor results in perturbations in lysyl oxidase activation, and in collagen processing, deposition, and cross-linking in phenotypically normal cultured murine MC3T3-E1 cells. Data show that BMP-1 Inhibitor dose dependently inhibits lysyl oxidase activation by up to 50% in undifferentiated proliferating cells. In differentiating cultures, BMP-1 inhibitor decreased collagen processing but did not inhibit the accumulation of mature collagen cross-links. Finally, electron microscopy studies show that collagen fibril diameter increased. Thus, inhibition of procollagen C-proteinases results in perturbed collagen deposition primarily via decreased collagen processing.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/metabolismo , Colágeno Tipo I/metabolismo , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/metabolismo , Osteoblastos/enzimologia , Proteína-Lisina 6-Oxidase/metabolismo , Animais , Proteína Morfogenética Óssea 1 , Diferenciação Celular , Divisão Celular , Células Cultivadas , Reagentes de Ligações Cruzadas/metabolismo , Interações Medicamentosas , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacologia , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta1
7.
J Biol Chem ; 279(39): 40593-600, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15277520

RESUMO

Lysyl oxidase is an extracellular enzyme critical for the normal biosynthesis of collagens and elastin. In addition, lysyl oxidase reverts ras-mediated transformation, and lysyl oxidase expression is down-regulated in human cancers. Since suramin inhibits growth factor signaling pathways and induces lysyl oxidase in ras-transformed NIH3T3 cells (RS485 cells), we sought to investigate the effects of suramin on the phenotype of transformed cells and the role of lysyl oxidase in mediating these effects. Suramin treatment resulted in a more normal phenotype as judged by growth rate, cell cycle parameters, and morphology. beta-aminopropionitrile, the selective inhibitor of lysyl oxidase enzyme activity, was remarkably unable to block suramin-induced reversion. By contrast, ectopic antisense lysyl oxidase demonstrated that lysyl oxidase gene expression mediated phenotypic reversion. Since lysyl oxidase is synthesized as a 50 kDa precursor and processed to a 30 kDa active enzyme and 18 kDa propeptide, the effects of these two products on the transformed phenotype of RS485 cells were then directly assessed in the absence of suramin. Here we report, for the first time, that the lysyl oxidase propeptide, and not the lysyl oxidase enzyme, inhibits ras-dependent transformation as determined by effects on cell proliferation assays, growth in soft agar, and Akt-dependent induction of NF-kappaB activity. Thus, the lysyl oxidase propeptide, which is released during extracellular proteolytic processing of pro-lysyl oxidase, functions to inhibit ras-dependent cell transformation.


Assuntos
Proteína-Lisina 6-Oxidase/química , Aminopropionitrilo/farmacologia , Animais , Antineoplásicos/farmacologia , Ciclo Celular , Divisão Celular , Linhagem Celular Transformada , Colágeno/química , Elastina/química , Vetores Genéticos , Luciferases/metabolismo , Camundongos , Microscopia de Fluorescência , NF-kappa B/metabolismo , Células NIH 3T3 , Oligonucleotídeos Antissenso/química , Peptídeos/química , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteína-Lisina 6-Oxidase/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/metabolismo , Transdução de Sinais , Suramina/farmacologia , Fatores de Tempo , Transfecção
8.
J Cell Physiol ; 200(1): 53-62, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15137057

RESUMO

Differentiation of phenotypically normal osteoblast cultures leads to formation of a bone-like extracellular matrix in vitro. Maximum collagen synthesis occurs early in the life of these cultures, whereas insoluble collagen deposition occurs later and is accompanied by a diminished rate of collagen synthesis. The mechanisms that control collagen deposition seem likely to include regulation of extracellular collagen biosynthetic enzymes, but expression patterns of these enzymes in differentiating osteoblasts has received little attention. The present study determined the regulation of lysyl oxidase as a function of differentiation of phenotypically normal murine MC3T3-E1 cells at the level of RNA and protein expression and enzyme activity. In addition, the regulation of BMP-1/mTLD mRNA levels that encodes procollagen C-proteinases was assayed. The role of lysyl oxidase in controlling insoluble collagen accumulation was further investigated in inhibition studies utilizing beta-aminopropionitrile, a specific inhibitor of lysyl oxidase enzyme activity. Results indicate that lysyl oxidase is regulated as a function of differentiation of MC3T3-E1 cells, and that the maximum increase in lysyl oxidase activity precedes the most efficient phase of insoluble collagen accumulation. By contrast BMP-1/mTLD is more constitutively expressed. Inhibition of lysyl oxidase in these cultures increases the accumulation of abnormal collagen fibrils, as determined by solubility studies and by electron microscopy. Taken together, these data support that regulation of lysyl oxidase activity plays a key role in the control of collagen deposition by osteoblast cultures.


Assuntos
Diferenciação Celular , Colágeno/metabolismo , Regulação Enzimológica da Expressão Gênica , Osteoblastos/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Colágeno/ultraestrutura , Imuno-Histoquímica , Cinética , Camundongos , Osteoblastos/citologia , Osteoblastos/enzimologia , Osteoblastos/ultraestrutura , Proteína-Lisina 6-Oxidase/genética , Crânio/citologia , Solubilidade
9.
J Biol Chem ; 279(29): 30060-5, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15138266

RESUMO

Tumor necrosis factor-alpha (TNF-alpha) inhibits osteoblast function in vitro by inhibiting collagen deposition. Studies generally support that TNF-alpha does not inhibit collagen biosynthesis by osteoblasts but that collagen deposition is in some way diminished. The study investigated TNF-alpha regulation of biosynthetic enzymes and proteins crucial for posttranslational extracellular collagen maturation in osteoblasts including procollagen C-proteinases, procollagen C-proteinase enhancer, and lysyl oxidase. The working hypothesis is that such regulation could inhibit collagen deposition by osteoblasts. We report that in phenotypically normal MC3T3-E1 osteoblasts, TNF-alpha decreases collagen deposition without decreasing collagen mRNA levels or procollagen protein synthesis. Analyses of the cell layers revealed that TNF-alpha diminished the levels of mature collagen cross-links, pyridinoline and deoxypyridinoline. Further analyses revealed that the mRNA expression for lysyl oxidase, the determining enzyme required for collagen cross-linking, is down-regulated by TNF-alpha in a concentration- and time-dependent manner by up to 50%. The decrease was accompanied by a significant reduction of lysyl oxidase protein levels and enzyme activity. By contrast, Northern and Western blotting studies revealed that procollagen C-proteinases bone morphogenic protein-1 and mammalians Tolloid and procollagen C-proteinase enhancer were expressed in MC3T3-E1 cells and not down-regulated. The data together demonstrate that TNF-alpha does not inhibit collagen synthesis but does inhibit the expression and activity of lysyl oxidase in osteoblasts, thereby contributing to perturbed collagen cross-linking and accumulation. These studies identify a novel mechanism in which proinflammatory cytokine modulation of an extracellular biosynthetic enzyme plays a determining role in the control of collagen accumulation by osteoblasts.


Assuntos
Colágeno/metabolismo , Osteoblastos/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Aminoácidos/farmacologia , Animais , Northern Blotting , Western Blotting , Linhagem Celular , Reagentes de Ligações Cruzadas/farmacologia , Relação Dose-Resposta a Droga , Regulação para Baixo , Inflamação , Camundongos , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Fatores de Tempo
10.
J Biol Chem ; 278(33): 30781-7, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12788924

RESUMO

Lysyl oxidase catalyzes oxidative deamination of peptidyl-lysine and hydroxylysine residues in collagens and lysine residues in elastin to form peptidyl aldehydes that are required for the formation of covalent cross-links in normal extracellular matrix biosynthesis. Lysyl oxidase in addition has tumor suppressor activity, and phenotypic reversion of transformed cell lines is accompanied by increased lysyl oxidase expression. The mechanism of low expression of lysyl oxidase in tumor cells is unknown. The present study investigates the hypothesis that autocrine growth factor pathways maintain low lysyl oxidase expression levels in c-H-ras-transformed fibroblasts (RS485 cell line). Autocrine pathways were blocked with suramin, a general inhibitor of growth factor receptor binding, and resulted in more than a 10-fold increase in lysyl oxidase expression and proenzyme production. This regulation was found to be reversible and occurred at the transcriptional level determined using lysyl oxidase promoter/reporter gene assays. Function blocking anti-fibroblast growth factor-2 (FGF-2) antibody enhanced lysyl oxidase expression in the absence of suramin. Finally, the addition of FGF-2 to suramin-treated cells completely reversed suramin stimulation of lysyl oxidase mRNA levels. Data support that an FGF-2 autocrine pathway inhibits lysyl oxidase transcription in the tumorigenic-transformed RS485 cell line. This finding may be of therapeutic significance and, in addition, provides a new experimental approach to investigate the mechanism of the tumor suppressor activity of lysyl oxidase.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/genética , Células 3T3 , Animais , Antineoplásicos/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Interações Medicamentosas , Genes Reporter , Genes ras , Luciferases , Camundongos , Regiões Promotoras Genéticas , RNA Mensageiro/análise , Suramina/farmacologia , Regulação para Cima/efeitos dos fármacos
11.
Anal Biochem ; 300(2): 245-51, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11779117

RESUMO

Lysyl oxidase catalyzes the final known enzymatic step required for collagen and elastin cross-linking in the biosynthesis of normal mature functional insoluble extracellular matrices. In addition, lysyl oxidase has been identified as a possible tumor suppressor. Lysyl oxidase activity in biological samples is traditionally and most reliably assessed by tritium release end-point assays using radiolabeled collagen or elastin substrates involving laborious vacuum distillation of the released tritiated water. In addition, a less sensitive fluorometric method exists that employs nonpeptidyl amine lysyl oxidase substrates and measures hydrogen peroxide production with horseradish peroxidase coupled to homovanillate oxidation. The present study describes a more sensitive fluorescent assay for lysyl oxidase activity that utilizes 1,5-diaminopentane as substrate, and released hydrogen peroxide is detected using Amplex red in horseradish peroxidase-coupled reactions. This method allows the detection of 40 ng of enzyme per 2 ml assay at 37 degrees C and is 7.5 times more sensitive than the currently available fluorometric assay for enzyme activity. This method eliminates the interference that occurs in some biological samples and can be successfully used to detect lysyl oxidase activity in cell culture experiments.


Assuntos
Fluorometria/métodos , Proteína-Lisina 6-Oxidase/análise , Proteína-Lisina 6-Oxidase/metabolismo , Células 3T3 , Animais , Aorta/enzimologia , Bovinos , Células Cultivadas , Compostos Cromogênicos/metabolismo , Ácido Homovanílico/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , Camundongos , Oxazinas/metabolismo , Sensibilidade e Especificidade , Trítio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA