Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Exp Bot ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666596

RESUMO

Plants rely on complex regulatory mechanisms to ensure proper growth and development. As sessile organisms, these mechanisms must be flexible enough to adapt to changes in the environment. The GROWTH-REGULATING FACTORs (GRFs) are plant-specific transcription factors that act as a central hub controlling plant growth and development, offering promising biotechnological applications to enhance plant performance. Here, we analyze the complex molecular mechanisms that regulate GRF activity, and how their natural and synthetic variants can impact on plant growth and development. We describe the biological roles of the GRFs and examine how they regulate gene expression and contribute to the control of organ growth and the plant's response to a changing environment. This review focuses on the premise that unlocking their full biotechnological potential requires a thorough understanding of the various regulatory layers governing GRF activity, the functional divergence among GRF family members and the gene networks that they regulate.

2.
Plant Physiol ; 191(3): 1789-1802, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36652435

RESUMO

The growth-regulating factor (GRF) family of transcriptional factors are involved in the control of leaf size and senescence, inflorescence and root growth, grain size, and plant regeneration. However, there is limited information about the genes regulated by these transcriptional factors, which are in turn responsible for their functions. Using a meta-analysis approach, we identified genes encoding Arabidopsis (Arabidopsis thaliana) zinc-finger homeodomain (ZF-HD) transcriptional factors, as potential targets of the GRFs. We further showed that GRF3 binds to the promoter of one of the members of the ZF-HD family, HOMEOBOX PROTEIN 33 (HB33), and activates its transcription. Increased levels of HB33 led to different modifications in leaf cell number and size that were dependent on its expression levels. Furthermore, we found that expression of HB33 for an extended period during leaf development increased leaf longevity. To cope with the functional redundancy among ZF-HD family members, we generated a dominant repressor version of HB33, HB33-SRDX. Expression of HB33-SRDX from HB33 regulatory regions was seedling-lethal, revealing the importance of the ZF-HD family in plant development. Misexpression of HB33-SRDX in early leaf development caused a reduction in both cell size and number. Interestingly, the loss-of-function of HB33 in lines carrying a GRF3 allele insensitive to miR396 reverted the delay in leaf senescence characteristic of these plants. Our results revealed functions for ZF-HDs in leaf development and linked them to the GRF pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Folhas de Planta/metabolismo
3.
Plant Mol Biol ; 108(1-2): 93-103, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34982361

RESUMO

KEY MESSAGE: Proper root growth depends on the clearance of TCP transcripts from the root apical meristem by microRNA miR319. The evolutionarily conserved microRNA miR319 regulates genes encoding TCP transcription factors in angiosperms. The miR319-TCP module controls cell proliferation and differentiation in leaves and other aerial organs. The current model sustains that miR319 quantitatively tunes TCP activity during leaf growth and development, ultimately affecting its size. In this work we studied how this module participates in Arabidopsis root development. We found that misregulation of TCP activity through impairment of miR319 binding decreased root meristem size and root length. Cellular and molecular analyses revealed that high TCP activity affects cell number and cyclin expression but not mature cell length, indicating that, in roots, unchecking the expression of miR319-regulated TCPs significantly affects cell proliferation. Conversely, tcp multiple mutants showed no obvious effect on root growth, but strong defects in leaf morphogenesis. Therefore, in contrast to the quantitative regulation of the TCPs by miR319 in leaves, our data suggest that miR319 clears TCP transcripts from root cells. Hence, we provide new insights into the functions of the miR319-TCP regulatory system in Arabidopsis development, highlighting a different modus operandi for its action mechanism in roots and shoots.


Assuntos
Proteínas de Arabidopsis/fisiologia , MicroRNAs/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , MicroRNAs/metabolismo , Microscopia Confocal , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo , Transcriptoma
4.
Plant Physiol ; 185(4): 1798-1812, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33580700

RESUMO

Members of the GROWTH REGULATING FACTOR (GRF) family of transcription factors play key roles in the promotion of plant growth and development. Many GRFs are post-transcriptionally repressed by microRNA (miRNA) miR396, an evolutionarily conserved small RNA, which restricts their expression to proliferative tissue. We performed a comprehensive analysis of the GRF family in eudicot plants and found that in many species all the GRFs have a miR396-binding site. Yet, we also identified GRFs with mutations in the sequence recognized by miR396, suggesting a partial or complete release of their post-transcriptional repression. Interestingly, Brassicaceae species share a group of GRFs that lack miR396 regulation, including Arabidopsis GRF5 and GRF6. We show that instead of miR396-mediated post-transcriptional regulation, the spatiotemporal control of GRF5 is achieved through evolutionarily conserved promoter sequences, and that AUXIN RESPONSE FACTOR 2 (ARF2) binds to such conserved sequences to repress GRF5 expression. Furthermore, we demonstrate that the unchecked expression of GRF5 in arf2 mutants is responsible for the increased cell number of arf2 leaves. The results describe a switch in the repression mechanisms that control the expression of GRFs and mechanistically link the control of leaf growth by miR396, GRFs, and ARF2 transcription factors.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/genética , MicroRNAs , Reguladores de Crescimento de Plantas/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Desenvolvimento Vegetal , Análise de Sequência de Proteína
5.
Nat Commun ; 11(1): 5320, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087730

RESUMO

MicroRNAs (miRNAs) are endogenous small RNAs of ∼21 nt that regulate multiple biological pathways in multicellular organisms. They derive from longer transcripts that harbor an imperfect stem-loop structure. In plants, the ribonuclease type III DICER-LIKE1 assisted by accessory proteins cleaves the precursor to release the mature miRNA. Numerous studies highlight the role of the precursor secondary structure during plant miRNA biogenesis; however, little is known about the relevance of the precursor sequence. Here, we analyzed the sequence composition of plant miRNA primary transcripts and found specifically located sequence biases. We show that changes in the identity of specific nucleotides can increase or abolish miRNA biogenesis. Most conspicuously, our analysis revealed that the identity of the nucleotides at unpaired positions of the precursor plays a crucial role during miRNA biogenesis in Arabidopsis.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética , Proteínas de Arabidopsis/metabolismo , Pareamento Incorreto de Bases , Proteínas de Ciclo Celular/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , MicroRNAs/química , MicroRNAs/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único , Processamento Pós-Transcricional do RNA , RNA de Plantas/química , Ribonuclease III/metabolismo
6.
Nat Biotechnol ; 38(11): 1274-1279, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33046875

RESUMO

The potential of genome editing to improve the agronomic performance of crops is often limited by low plant regeneration efficiencies and few transformable genotypes. Here, we show that expression of a fusion protein combining wheat GROWTH-REGULATING FACTOR 4 (GRF4) and its cofactor GRF-INTERACTING FACTOR 1 (GIF1) substantially increases the efficiency and speed of regeneration in wheat, triticale and rice and increases the number of transformable wheat genotypes. GRF4-GIF1 transgenic plants were fertile and without obvious developmental defects. Moreover, GRF4-GIF1 induced efficient wheat regeneration in the absence of exogenous cytokinins, which facilitates selection of transgenic plants without selectable markers. We also combined GRF4-GIF1 with CRISPR-Cas9 genome editing and generated 30 edited wheat plants with disruptions in the gene Q (AP2L-A5). Finally, we show that a dicot GRF-GIF chimera improves regeneration efficiency in citrus, suggesting that this strategy can be applied to dicot crops.


Assuntos
Plantas Geneticamente Modificadas/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Regeneração , Edição de Genes , Oryza/embriologia , Oryza/genética , Oryza/fisiologia , Triticum/embriologia , Triticum/genética , Triticum/fisiologia
7.
Curr Opin Plant Biol ; 53: 31-42, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31726426

RESUMO

Multicellular life relies on complex regulatory mechanisms ensuring proper growth and development. In plants, these mechanisms construct a body plan that is both reproducible, and highly flexible for adaptation to different environmental conditions. A crucial regulatory module - consisting of microRNA miR396, GROWTH REGULATING FACTORS (GRFs) and GRF-INTERACTING FACTORS (GIFs) - has been shown to control growth of multiple tissues and organs in a variety of species. Especially in the last few years, research has expanded our knowledge of miR396-GRF/GIF function to crops, where it affects agronomically important traits, and highlighted its role in coordinating growth with endogenous and environmental factors. Special properties make the miR396-GRF/GIF system highly efficient in growth regulation and a promising target for improving plant yield.


Assuntos
MicroRNAs , Fatores de Transcrição , Biotecnologia , Cruzamento , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
10.
Methods Mol Biol ; 1932: 261-283, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30701507

RESUMO

MicroRNAs (miRNA) are small RNAs of 20-22 nt that regulate diverse biological pathways through the modulation of gene expression. miRNAs recognize target RNAs by base complementarity and guide them to degradation or translational arrest. They are transcribed as longer precursors with extensive secondary structures. In plants, these precursors are processed by a complex harboring DICER-LIKE1 (DCL1), which cuts on the precursor stem region to release the mature miRNA together with the miRNA*. In both plants and animals, the miRNA precursors contain spatial clues that determine the position of the miRNA along their sequences. DCL1 is assisted by several proteins, such as the double-stranded RNA binding protein, HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). The precise biogenesis of miRNAs is of utter importance since it determines the exact nucleotide sequence of the mature small RNAs and therefore the identity of the target genes. miRNA processing itself can be regulated and therefore can determine the final small RNA levels and activity. Here, we describe methods to analyze miRNA processing intermediates in plants. These approaches can be used in wild-type or mutant plants, as well as in plants grown under different conditions, allowing a molecular characterization of the miRNA biogenesis from the RNA precursor perspective.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , MicroRNAs/genética , RNA de Plantas/genética , RNA Helicases DEAD-box/genética , Precursores de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas Serrate-Jagged/genética
11.
Methods Mol Biol ; 1863: 3-17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30324589

RESUMO

The regulatory mechanisms involved in plant development include many signals, some of them acting as graded positional cues regulating gene expression in a concentration-dependent manner. These regulatory molecules, that can be considered similar to animal morphogens, control cell behavior in developing organs. A suitable experimental approach to study expression gradients in plants is quantitative laser scanning confocal microscopy (LSCM) using Arabidopsis thaliana root tips as a model system. In this chapter, we outline a detailed method for image acquisition using LSCM, including detailed microscope settings and image analysis using FIJI as software platform.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Raízes de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/ultraestrutura , Software
12.
Nucleic Acids Res ; 46(20): 10709-10723, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30289546

RESUMO

Many evolutionarily conserved microRNAs (miRNAs) in plants regulate transcription factors with key functions in development. Hence, mutations in the core components of the miRNA biogenesis machinery cause strong growth defects. An essential aspect of miRNA biogenesis is the precise excision of the small RNA from its precursor. In plants, miRNA precursors are largely variable in size and shape and can be processed by different modes. Here, we optimized an approach to detect processing intermediates during miRNA biogenesis. We characterized a miRNA whose processing is triggered by a terminal branched loop. Plant miRNA processing can be initiated by internal bubbles, small terminal loops or branched loops followed by dsRNA segments of 15-17 bp. Interestingly, precision and efficiency vary with the processing modes. Despite the various potential structural determinants present in a single a miRNA precursor, DCL1 is mostly guided by a predominant structural region in each precursor in wild-type plants. However, our studies in fiery1, hyl1 and se mutants revealed the existence of cleavage signatures consistent with the recognition of alternative processing determinants. The results provide a general view of the mechanisms underlying the specificity of miRNA biogenesis in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , MicroRNAs/genética , Monoéster Fosfórico Hidrolases/genética , Proteínas de Ligação a RNA/genética , Sítios de Ligação , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , MicroRNAs/biossíntese , Mutação , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Estrutura Secundária de Proteína , Processamento Pós-Transcricional do RNA , RNA de Cadeia Dupla/genética , Plântula , Transcrição Gênica , Transgenes
13.
Sci Rep ; 8(1): 13447, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194309

RESUMO

An increase in crop yield is essential to reassure food security to meet the accelerating global demand. Several genetic modifications can increase organ size, which in turn might boost crop yield. Still, only in a few cases their performance has been evaluated under stress conditions. MicroRNA miR396 repress the expression of GROWTH-REGULATING FACTOR (GRF) genes that codes for transcription factors that promote organ growth. Here, we show that both Arabidopsis thaliana At-GRF2 and At-GRF3 genes resistant to miR396 activity (rGRF2 and rGRF3) increased organ size, but only rGRF3 can produce this effect without causing morphological defects. Furthermore, introduction of At-rGRF3 in Brassica oleracea can increase organ size, and when At-rGRF3 homologs from soybean and rice are introduced in Arabidopsis, leaf size is also increased. This suggests that regulation of GRF3 activity by miR396 is important for organ growth in a broad range of species. Plants harboring rGRF3 have larger leaves also under drought stress, a condition that stimulates miR396 accumulation. These plants also showed an increase in the resistance to virulent bacteria, suggesting that the size increment promoted by rGRF3 occurs without an obvious cost on plant defenses. Our findings indicate that rGRF3 can increase plant organ size under both normal and stress conditions and is a valuable tool for biotechnological applications.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/genética , Brassica/crescimento & desenvolvimento , MicroRNAs/genética , MicroRNAs/metabolismo , Tamanho do Órgão/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Folhas de Planta/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Fatores de Transcrição/genética
14.
Plant Cell ; 30(2): 347-359, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29352064

RESUMO

In the root meristem, the quiescent center (QC) is surrounded by stem cells, which in turn generate the different cell types of the root. QC cells rarely divide under normal conditions but can replenish damaged stem cells. In the proximal meristem, the daughters of stem cells, which are referred to as transit-amplifying cells, undergo additional rounds of cell division prior to differentiation. Here, we describe the functions of GRF-INTERACTING FACTORs (GIFs), including ANGUSTIFOLIA3 (AN3), in Arabidopsis thaliana roots. GIFs have been shown to interact with GRF transcription factors and SWI/SNF chromatin remodeling complexes. We found that combinations of GIF mutants cause the loss of QC identity. However, despite their QC impairment, GIF mutants have a significantly enlarged root meristem with additional lateral root cap layers. We show that the increased expression of PLETHORA1 (PLT1) is at least partially responsible for the large root meristems of an3 mutants. Furthermore, we found that GIFs are necessary for maintaining the precise expression patterns of key developmental regulators and that AN3 complexes bind directly to the promoter regions of PLT1 as well as SCARECROW We propose that AN3/GIFs participate in different pathways that control QC organization and the size of the meristem.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Diferenciação Celular/genética , Divisão Celular/genética , Montagem e Desmontagem da Cromatina/genética , Homeostase/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Plant Physiol ; 176(2): 1694-1708, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29133375

RESUMO

The characteristic leaf shapes we see in all plants are in good part the outcome of the combined action of several transcription factor networks that translate into cell division activity during the early development of the organ. We show here that wild-type leaves have distinct transcriptomic profiles in center and marginal regions. Certain transcripts are enriched in margins, including those of CINCINNATA-like TCPs (TEOSINTE BRANCHED, CYCLOIDEA and PCF1/2) and members of the NGATHA and STYLISH gene families. We study in detail the contribution of microRNA319 (miR319)-regulated TCP transcription factors to the development of the center and marginal regions of Arabidopsis (Arabidopsis thaliana) leaves. We compare in molecular analyses the wild type, the tcp2 tcp4 mutant that has enlarged flat leaves, and the tcp2 tcp3 tcp4 tcp10 mutant with strongly crinkled leaves. The different leaf domains of the tcp mutants show changed expression patterns for many photosynthesis-related genes, indicating delayed differentiation, especially in the marginal parts of the organ. At the same time, we found an up-regulation of cyclin genes and other genes that are known to participate in cell division, specifically in the marginal regions of tcp2 tcp3 tcp4 tcp10 Using GUS reporter constructs, we confirmed extended mitotic activity in the tcp2 tcp3 tcp4 tcp10 leaf, which persisted in small defined foci in the margins when the mitotic activity had already ceased in wild-type leaves. Our results describe the role of miR319-regulated TCP transcription factors in the coordination of activities in different leaf domains during organ development.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Plant Cell ; 29(6): 1248-1261, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28550151

RESUMO

MicroRNAs (miRNAs) are endogenous small RNAs that recognize target sequences by base complementarity and play a role in the regulation of target gene expression. They are processed from longer precursor molecules that harbor a fold-back structure. Plant miRNA precursors are quite variable in size and shape, and are recognized by the processing machinery in different ways. However, ancient miRNAs and their binding sites in target genes are conserved during evolution. Here, we designed a strategy to systematically analyze MIRNAs from different species generating a graphical representation of the conservation of the primary sequence and secondary structure. We found that plant MIRNAs have evolutionary footprints that go beyond the small RNA sequence itself, yet their location along the precursor depends on the specific MIRNA We show that these conserved regions correspond to structural determinants recognized during the biogenesis of plant miRNAs. Furthermore, we found that the members of the miR166 family have unusual conservation patterns and demonstrated that the recognition of these precursors in vivo differs from other known miRNAs. Our results describe a link between the evolutionary conservation of plant MIRNAs and the mechanisms underlying the biogenesis of these small RNAs and show that the MIRNA pattern of conservation can be used to infer the mode of miRNA biogenesis.


Assuntos
Evolução Molecular , MicroRNAs/genética , RNA de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Estabilidade de RNA
17.
Curr Opin Plant Biol ; 34: 68-76, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27794260

RESUMO

Plants have the ability to generate different and new organs throughout their life cycle. Organ growth is mostly determined by the combinatory effects of cell proliferation and cell expansion. Still, organ size and shape are adjusted constantly by environmental conditions and developmental timing. The plasticity of plant development is further illustrated by the diverse organ forms found in nature. MicroRNAs (miRNAs) are known to control key biological processes in plants. In this review, we will discuss recent findings showing the participation of miRNA networks in the regulation of cell proliferation and organ growth. It has become clear that miRNA networks play both integrative and specific roles in the control of organ development in Arabidopsis thaliana. Furthermore, recent work in different species demonstrated a broad role for miR396 in the control of organ size, and that specific tuning of the miR396 network can improve crop yield.


Assuntos
MicroRNAs/genética , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
18.
Plant Signal Behav ; 11(6): e1184809, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27172373

RESUMO

The combinatory effects of cell proliferation and cell elongation determines the rate at which organs growth. In the root meristematic zone cells both divide and expand, while post-mitotic cells in the elongation zone only expands until they reach their final size. The transcription factors of the GROWTH-REGULATING FACTOR (GRF) class promote cell proliferation in various plant organs. Their expression is restricted to cells with a high proliferative capacity, yet strong downregulation of the GRF activity compromise the plant survival. Part of expression pattern of the GRFs is ensured by the post-transcriptional repression mediated by the conserved microRNA miR396. Here we show the quantitative effects in root growth caused by GRF depletion in a series of transgenic lines with different miR396 levels. We show that high miRNA levels affect cell elongation and proliferation in roots. Detailed analysis suggests that cell proliferation is restricted due to a reduction in cell cycle speed that might result from defects in the accumulation of mitotic cyclins. The results provide insights into the participation of the miRNA-GRF regulatory network in root development.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , MicroRNAs/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proliferação de Células , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Meristema/citologia , Meristema/metabolismo , MicroRNAs/genética , Mitose/genética , Plantas Geneticamente Modificadas
19.
Plant Cell ; 27(12): 3354-66, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26645252

RESUMO

To ensure an adequate organ mass, the daughters of stem cells progress through a transit-amplifying phase displaying rapid cell division cycles before differentiating. Here, we show that Arabidopsis thaliana microRNA miR396 regulates the transition of root stem cells into transit-amplifying cells by interacting with GROWTH-REGULATING FACTORs (GRFs). The GRFs are expressed in transit-amplifying cells but are excluded from the stem cells through inhibition by miR396. Inactivation of the GRFs increases the meristem size and induces periclinal formative divisions in transit-amplifying cells. The GRFs repress PLETHORA (PLT) genes, regulating their spatial expression gradient. Conversely, PLT activates MIR396 in the stem cells to repress the GRFs. We identified a pathway regulated by GRF transcription factors that represses stem cell-promoting genes in actively proliferating cells, which is essential for the progression of the cell cycle and the orientation of the cell division plane. If unchecked, the expression of the GRFs in the stem cell niche suppresses formative cell divisions and distorts the organization of the quiescent center. We propose that the interactions identified here between miR396 and GRF and PLT transcription factors are necessary to establish the boundary between the stem cell niche and the transit-amplifying region.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Divisão Celular , Meristema/citologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Nicho de Células-Tronco/genética , Células-Tronco , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
PLoS One ; 9(11): e113243, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409478

RESUMO

MicroRNAs have turned out to be important regulators of gene expression. These molecules originate from longer transcripts that are processed by ribonuclease III (RNAse III) enzymes. Dicer proteins are essential RNAse III enzymes that are involved in the generation of microRNAs (miRNAs) and other small RNAs. The correct function of Dicer relies on the participation of accessory dsRNA binding proteins, the exact function of which is not well-understood so far. In plants, the double stranded RNA binding protein Hyponastic Leaves 1 (HYL1) helps Dicer Like protein (DCL1) to achieve an efficient and precise excision of the miRNAs from their primary precursors. Here we dissected the regions of HYL1 that are essential for its function in Arabidopsis thaliana plant model. We generated mutant forms of the protein that retain their structure but affect its RNA-binding properties. The mutant versions of HYL1 were studied both in vitro and in vivo, and we were able to identify essential aminoacids/residues for its activity. Remarkably, mutation and even ablation of one of the purportedly main RNA binding determinants does not give rise to any major disturbances in the function of the protein. We studied the function of the mutant forms in vivo, establishing a direct correlation between affinity for the pri-miRNA precursors and protein activity.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Dicroísmo Circular , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA