Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(9): E2115-E2124, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440493

RESUMO

Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila Our findings indicate that targeted down-regulation of the GABAA receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila.


Assuntos
Drosophila/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Caminhada/fisiologia , Algoritmos , Animais , Animais Geneticamente Modificados , Eletromiografia , Processamento Eletrônico de Dados , Extremidades/fisiologia , Retroalimentação Sensorial , Imuno-Histoquímica , Interneurônios/fisiologia , Íntrons , Masculino , Microscopia Confocal , Neurotransmissores/fisiologia , Periodicidade , Fenótipo , Interferência de RNA , Processamento de Sinais Assistido por Computador , Gravação em Vídeo
2.
PLoS One ; 1: e122, 2006 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-17205126

RESUMO

Legs are locomotor appendages used by a variety of evolutionarily distant vertebrates and invertebrates. The primary biological leg function, locomotion, requires the formation of a specialised appendicular musculature. Here we report evidence that ladybird, an orthologue of the Lbx1 gene recognised as a hallmark of appendicular myogenesis in vertebrates, is expressed in leg myoblasts, and regulates the shape, ultrastructure and functional properties of leg muscles in Drosophila. Ladybird expression is progressively activated in myoblasts associated with the imaginal leg disc and precedes that of the founder cell marker dumbfounded. The RNAi-mediated attenuation of ladybird expression alters properties of developing myotubes, impairing their ability to grow and interact with the internal tendons and epithelial attachment sites. It also affects sarcomeric ultrastructure, resulting in reduced leg muscle performance and impaired mobility in surviving flies. The over-expression of ladybird also results in an abnormal pattern of dorsally located leg muscles, indicating different requirements for ladybird in dorsal versus ventral muscles. This differential effect is consistent with the higher level of Ladybird in ventrally located myoblasts and with positive ladybird regulation by extrinsic Wingless signalling from the ventral epithelium. In addition, ladybird expression correlates with that of FGF receptor Heartless and the read-out of FGF signalling downstream of FGF. FGF signals regulate the number of leg disc associated myoblasts and are able to accelerate myogenic differentiation by activating ladybird, leading to ectopic muscle fibre formation. A key role for ladybird in leg myogenesis is further supported by its capacity to repress vestigial and to down-regulate the vestigial-governed flight muscle developmental programme. Thus in Drosophila like in vertebrates, appendicular muscles develop from a specialised pool of myoblasts expressing ladybird/Lbx1. The ladybird/Lbx1 gene family appears as a part of an ancient genetic circuitry determining leg-specific properties of myoblasts and making an appendage adapted for locomotion.


Assuntos
Drosophila/crescimento & desenvolvimento , Drosophila/genética , Genes de Insetos , Desenvolvimento Muscular/genética , Animais , Animais Geneticamente Modificados , Evolução Biológica , Drosophila/fisiologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Extremidades/crescimento & desenvolvimento , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Locomoção , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Força Muscular , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos Esqueléticos/metabolismo , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA