Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 47(21): 12566-74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24088179

RESUMO

Airborne measurements of aerosol composition and gas phase compounds over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico in June 2010 indicated the presence of high concentrations of secondary organic aerosol (SOA) formed from organic compounds of intermediate volatility. In this work, we investigated SOA formation from South Louisiana crude oil vapors reacting with OH in a Potential Aerosol Mass flow reactor. We use the dependence of evaporation time on the saturation concentration (C*) of the SOA precursors to separate the contribution of species of different C* to total SOA formation. This study shows consistent results with those at the DWH oil spill: (1) organic compounds of intermediate volatility with C* = 10(5)-10(6) µg m(-3) contribute the large majority of SOA mass formed, and have much larger SOA yields (0.37 for C* = 10(5) and 0.21 for C* = 10(6) µg m(-3)) than more volatile compounds with C*≥10(7) µg m(-3), (2) the mass spectral signature of SOA formed from oxidation of the less volatile compounds in the reactor shows good agreement with that of SOA formed at DWH oil spill. These results also support the use of flow reactors simulating atmospheric SOA formation and aging.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Petróleo/análise , Gases , Golfo do México , Laboratórios , Compostos Orgânicos/análise , Poluição por Petróleo , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA