RESUMO
In this work we performed a detailed numerical analysis to investigate the dynamic susceptibility of 1000 nm long Fe3O4 nanotubes by varying the diameter, the tube wall thickness and the magnitude of the external magnetic field applied along the tube axis. We found two well-defined modes, one of low frequency associated with the caps of the nanotubes, and another of high frequency associated with the central area of the nanotubes, which can be controlled by varying the geometry of the tubes or the external magnetic field to which they are subjected. These results allow us to suggest the use of these nanotubes in applications that require controlling the resonant frequency in the GHz range.
RESUMO
In this work, we report on the synthesis and characterization of six new iridium(III) complexes of the type [Ir(C^N)2(N^N)]+ using 2-phenylpyridine (C1-3) and its fluorinated derivative (C4-6) as cyclometalating ligands (C^N) and R-phenylimidazo(4,5-f)1,10-phenanthroline (R = H, CH3, F) as the ancillary ligand (N^N). These luminescent complexes have been fully characterized through optical and electrochemical studies. In solution, the C4-6 series exhibits quantum yields (Ф) twice as high as the C1-3 series, exceeding 60% in dichloromethane and where 3MLCT/3LLCT and 3LC emissions participate in the phenomenon. These complexes were employed in the active layer of light-emitting electrochemical cells (LECs). Device performance of maximum luminance values of up to 21.7 Lx at 14.7 V were observed for the C2 complex and long lifetimes for the C1-3 series. These values are counterintuitive to the quantum yields observed in solution. Thus, we established that the rigidity of the system and the structure of the solid matrix dramatically affect the electronic properties of the complex. This research contributes to understanding the effects of the modifications in the ancillary and cyclometalating ligands, the photophysics of the complexes, and their performance in LEC devices.
RESUMO
In the present study, we report on the successful synthesis of hollow iron oxide nanospheres. The hollow Fe3O4 nanospheres were synthesized following a four-step procedure: electrospraying spherical PVP particles, coating these particles with alumina (Al2O3) and hematite (Fe2O3) through atomic layer deposition and, finally, a thermal reduction process to degrade the polymer (PVP) and convert hematite (Fe2O3) into magnetite (Fe3O4). A structural analysis using X-ray diffraction (XRD) confirmed the effectiveness of the thermal reduction process. A morphological analysis confirmed that the four-step procedure allowed for the obtainment of hollow iron oxide nanospheres, even though the reduction process caused a contraction in the diameter of the particles of almost 300 nm, but did not affect the thickness of the walls of the hollow spheres that remained at approximately 15 nm. Magnetic properties of the hollow iron oxide nanospheres enable their use in applications where the agglomeration of magnetic nanostructures in liquid media is commonly not allowed, such as in drug encapsulation and delivery.
RESUMO
Zinc oxide nanoparticles were successfully synthesized under precipitation processes, using ZnSO4·7H2O as a Zn2+ precursor and K2CO3 used as a basic source, and hydrozincite was obtained as an intermediary, which was treated under two procedures; first procedure involved multiple stages to get final precipitated with NaOH, and in the second procedure the hydrozincite was straightforwardly dried at 220 °C. By both processes ZnO structures were obtained, which were turned into nanoparticles by a solvothermal treatment, for four hours in ethylene glycol at 200 °C. The final products for the first procedure was conglomerate of spherical nanoparticles with sizes ranged between 5-10 nm and dispersed ellipsoidal nanoparticles for the second procedure. Apart off the two procedures mentioned above, another synthesis was carried out with the same Zn2+ precursor but now using NaOH, and the solvothermal treatment produced ZnO mixed micro-structures which under ultrasonic cavitation disaggregated on mesoporous ZnO nanoplates of hexagonal shapes with nanopore sizes of approximately 0.35 nm. All ZnOs synthesized were structurally characterized with XRD, TEM and FT-IR techniques, and electronically with UV-Vis absorption and diffuse reflectance spectroscopies.
RESUMO
The search for new antimicrobial substances has increased in recent years. Antimicrobial nanostructures are one of the most promising alternatives. In this work, titanium dioxide nanotubes were obtained by an atomic layer deposition (ALD) process over electrospun polyvinyl alcohol nanofibers (PVN) at different temperatures with the purpose of obtaining antimicrobial nanostructures with a high specific area. Electrospinning and ALD parameters were studied in order to obtain PVN with smallest diameter and highest deposition rate, respectively. Chamber temperature was a key factor during ALD process and an appropriate titanium dioxide deposition performance was achieved at 200 °C. Subsequently, thermal and morphological analysis by SEM and TEM microscopies revealed hollow nanotubes were obtained after calcination process at 600 °C. This temperature allowed complete polymer removal and influenced the resulting anatase crystallographic structure of titanium dioxide that positively affected their antimicrobial activities. X-ray analysis confirmed the change of titanium dioxide crystallographic structure from amorphous phase of deposited PVN to anatase crystalline structure of nanotubes. These new nanostructures with very large surface areas resulted in interesting antimicrobial properties against Gram-positive and Gram-negative bacteria. Titanium dioxide nanotubes presented the highest activity against Escherichia coli with 5 log cycles reduction at 200 µg/mL concentration.
RESUMO
Electrospun nanofibers of poly (vinyl alcohol) (PV) were obtained to improve dispersion of cellulose nanocrystals (CNC) within hydrophobic biopolymeric matrices, such as poly(lactic acid) (PLA). Electrospun nanofibers (PV/CNC)n were successfully obtained with a final concentration of 23% (w/w) of CNC. Morphological, structural and thermal properties of developed CNC and electrospun nanofibers were characterized. X-ray diffraction and thermal analysis revealed that the crystallinity of PV was reduced by the electrospinning process, and the incorporation of CNC increased the thermal stability of biodegradable nanofibers. Interactions between CNC and PV polymer also enhanced the thermal stability of CNC and improved the dispersion of CNC within the PLA matrix. PLA materials with CNC lyophilized were also casted in order to compare the properties with materials based on CNC containing nanofibers. Nanofibers and CNC were incorporated into PLA at three concentrations: 0.5%, 1% and 3% (CNC respect to polymer weight) and nanocomposites were fully characterized. Overall, nanofibers containing CNC positively modified the physical properties of PLA materials, such as the crystallinity degree of PLA which was greatly enhanced. Specifically, materials with 1% nanofiber 1PLA(PV/CNC)n presented highest improvements related to mechanical and barrier properties; elongation at break was enhanced almost four times and the permeation of oxygen was reduced by approximately 30%.