Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631353

RESUMO

The continuous outbreak of drug-resistant bacterial and viral infections imposes the need to search for new drug candidates. Natural products from marine bacteria still inspire the design of pharmaceuticals. Indeed, marine bacteria have unique metabolic flexibility to inhabit each ecological niche, thus expanding their biosynthetic ability to assemble unprecedented molecules. The One-Strain-Many-Compounds approach and tandem mass spectrometry allowed the discovery of a Shewanella aquimarina strain as a source of novel imidazolium alkaloids via molecular networking. The alkaloid mixture was shown to exert bioactivities such as: (a) antibacterial activity against antibiotic-resistant Staphylococcus aureus clinical isolates at 100 µg/mL, (b) synergistic effects with tigecycline and linezolid, (c) restoration of MRSA sensitivity to fosfomycin, and (d) interference with the biofilm formation of S. aureus 6538 and MRSA. Moreover, the mixture showed antiviral activity against viruses with and without envelopes. Indeed, it inhibited the entry of coronavirus HcoV-229E and herpes simplex viruses into human cells and inactivated poliovirus PV-1 in post-infection assay at 200 µg/mL. Finally, at the same concentration, the fraction showed anthelminthic activity against Caenorhabditis elegans, causing 99% mortality after 48 h. The broad-spectrum activities of these compounds are partially due to their biosurfactant behavior and make them promising candidates for breaking down drug-resistant infectious diseases.

2.
PNAS Nexus ; 2(7): pgad221, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37448956

RESUMO

The South Shetland Trough, Antarctica, is an underexplored region for microbiological and biotechnological exploitation. Herein, we describe the isolation and characterization of the novel bacterium Lacinutrix shetlandiensis sp. nov. WUR7 from a deep-sea environment. We explored its chemical diversity via a metabologenomics approach, wherein the OSMAC strategy was strategically employed to upregulate cryptic genes for secondary metabolite production. Based on hybrid de novo whole genome sequencing and digital DNA-DNA hybridization, isolate WUR7 was identified as a novel species from the Gram-negative genus Lacinutrix. Its genome was mined for the presence of biosynthetic gene clusters with limited results. However, extensive investigation of its metabolism uncovered an unusual tryptophan decarboxylase with high sequence homology and conserved structure of the active site as compared to ZP_02040762, a highly specific tryptophan decarboxylase from Ruminococcus gnavus. Therefore, WUR7's metabolism was directed toward indole-based alkaloid biosynthesis by feeding it with L-tryptophan. As expected, its metabolome profile changed dramatically, by triggering the extracellular accumulation of a massive array of metabolites unexpressed in the absence of tryptophan. Untargeted LC-MS/MS coupled with molecular networking, followed along with chemoinformatic dereplication, allowed for the annotation of 10 indole alkaloids, belonging to ß-carboline, bisindole, and monoindole classes, alongside several unknown alkaloids. These findings guided us to the isolation of a new natural bisindole alkaloid 8,9-dihydrocoscinamide B (1), as the first alkaloid from the genus Lacinutrix, whose structure was elucidated on the basis of extensive 1D and 2D NMR and HR-ESIMS experiments. This comprehensive strategy allowed us to unlock the previously unexploited metabolome of L. shetlandiensis sp. nov. WUR7.

3.
Pharmaceutics ; 15(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36840022

RESUMO

Staphylococcus aureus is a Gram-positive opportunistic human pathogen responsible for severe infections and thousands of deaths annually, mostly due to its multidrug-resistant (MDR) variants. The cell membrane has emerged as a promising new therapeutic target, and lipophilic molecules, such as biosurfactants, are currently being utilized. Herein, we evaluated the antimicrobial activity of a rhamnolipids mixture produced by the Antarctic marine bacterium Pseudomonas gessardii M15. We demonstrated that our mixture has bactericidal activity in the range of 12.5-50 µg/mL against a panel of clinical MDR isolates of S. aureus, and that the mixture eradicated the bacterial population in 30 min at MIC value, and in 5 min after doubling the concentration. We also tested abilities of RLs to interfere with biofilm at different stages and determined that RLs can penetrate biofilm and kill the bacteria at sub-MICs values. The mixture was then used to functionalize a cotton swab to evaluate the prevention of S. aureus proliferation. We showed that by using 8 µg of rhamnolipids per swab, the entire bacterial load is eradicated, and just 0.5 µg is sufficient to reduce the growth by 99.99%. Our results strongly indicate the possibility of using this mixture as an additive for wound dressings for chronic wounds.

4.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232800

RESUMO

Pyoverdines (PVDs) are a class of siderophores produced mostly by members of the genus Pseudomonas. Their primary function is to accumulate, mobilize, and transport iron necessary for cell metabolism. Moreover, PVDs also play a crucial role in microbes' survival by mediating biofilm formation and virulence. In this review, we reorganize the information produced in recent years regarding PVDs biosynthesis and pathogenic mechanisms, since PVDs are extremely valuable compounds. Additionally, we summarize the therapeutic applications deriving from the PVDs' use and focus on their role as therapeutic target themselves. We assess the current biotechnological applications of different sectors and evaluate the state-of-the-art technology relating to the use of synthetic biology tools for pathway engineering. Finally, we review the most recent methods and techniques capable of identifying such molecules in complex matrices for drug-discovery purposes.


Assuntos
Oligopeptídeos , Sideróforos , Ferro/metabolismo , Oligopeptídeos/metabolismo , Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo
5.
Toxics ; 10(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36136491

RESUMO

Microalgae are increasingly recognised as suitable microorganisms for heavy metal (HM) removal, since they are able to adsorb them onto their cell wall and, in some cases, compartmentalise them inside organelles. However, at relatively high HM concentrations, they could also show signs of stress, such as organelle impairments and increased activities of antioxidant enzymes. The main aim of this review is to report on the mechanisms adopted by microalgae to counteract detrimental effects of high copper (Cu) concentrations, and on the microalgal potential for Cu bioremediation of aquatic environments. Studying the delicate balance between beneficial and detrimental effects of Cu on microalgae is of particular relevance as this metal is widely present in aquatic environments facing industrial discharges. This metal often induces chloroplast functioning impairment, generation of reactive oxygen species (ROS) and growth rate reduction in a dose-dependent manner. However, microalgae also possess proteins and small molecules with protective role against Cu and, in general, metal stress, which increase their resistance towards these pollutants. Our critical literature analysis reveals that microalgae can be suitable indicators of Cu pollution in aquatic environments, and could also be considered as components of eco-sustainable devices for HM bioremediation in association with other organisms.

6.
Mar Drugs ; 20(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35877717

RESUMO

A local strain of Nannochloropsis granulata (Ng) has been reported as the most productive microalgal strain in terms of both biomass yield and lipid content when cultivated in photobioreactors that simulate the light and temperature conditions during the summer on the west coast of Sweden. To further increase the biomass and the biotechnological potential of this strain in these conditions, mixotrophic growth (i.e., the simultaneous use of photosynthesis and respiration) with glycerol as an external carbon source was investigated in this study and compared with phototrophic growth that made use of air enriched with 1-2% CO2. The addition of either glycerol or CO2-enriched air stimulated the growth of Ng and theproduction of high-value long-chain polyunsaturated fatty acids (EPA) as well as the carotenoid canthaxanthin. Bioassays in human prostate cell lines indicated the highest antitumoral activity for Ng extracts and fractions from mixotrophic conditions. Metabolomics detected betaine lipids specifically in the bioactive fractions, suggesting their involvement in the observed antitumoral effect. Genes related to autophagy were found to be upregulated by the most bioactive fraction, suggesting a possible therapeutic target against prostate cancer progression. Taken together, our results suggest that the local Ng strain can be cultivated mixotrophically in summer conditions on the west coast of Sweden for the production of high-value biomass containing antiproliferative compounds, carotenoids, and EPA.


Assuntos
Microalgas , Estramenópilas , Biomassa , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Glicerol , Humanos , Microalgas/metabolismo , Estramenópilas/metabolismo , Suécia
7.
Pharmaceutics ; 13(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34959400

RESUMO

Emerging and re-emerging viruses represent a serious threat to human health at a global level. In particular, enveloped viruses are one of the main causes of viral outbreaks, as recently demonstrated by SARS-CoV-2. An effective strategy to counteract these viruses could be to target the envelope by using surface-active compounds. Rhamnolipids (RLs) are microbial biosurfactants displaying a wide range of bioactivities, such as antibacterial, antifungal and antibiofilm, among others. Being of microbial origin, they are environmentally-friendly, biodegradable, and less toxic than synthetic surfactants. In this work, we explored the antiviral activity of the rhamnolipids mixture (M15RL) produced by the Antarctic bacteria Pseudomonas gessardii M15 against viruses belonging to Coronaviridae and Herpesviridae families. In addition, we investigated the rhamnolipids' mode of action and the possibility of inactivating viruses on treated surfaces. Our results show complete inactivation of HSV-1 and HSV-2 by M15RLs at 6 µg/mL, and of HCoV-229E and SARS-CoV-2 at 25 and 50 µg/mL, respectively. Concerning activity against HCoV-OC43, 80% inhibition of cytopathic effect was recorded, while no activity against naked Poliovirus Type 1 (PV-1) was detectable, suggesting that the antiviral action is mainly directed towards the envelope. In conclusion, we report a significant activity of M15RL against enveloped viruses and demonstrated for the first time the antiviral effect of rhamnolipids against SARS-CoV-2.

8.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34959729

RESUMO

Marine pharmacology is an exciting and growing discipline that blends blue biotechnology and natural compound pharmacology together. Several sea-derived compounds that are approved on the pharmaceutical market were discovered in sponges, marine organisms that are particularly rich in bioactive metabolites. This paper was specifically aimed at reviewing the pharmacological activities of extracts or purified compounds from marine sponges that were collected in the Mediterranean Sea, one of the most biodiverse marine habitats, filling the gap in the literature about the research of natural products from this geographical area. Findings regarding different Mediterranean sponge species were individuated, reporting consistent evidence of efficacy mainly against cancer, infections, inflammatory, and neurological disorders. The sustainable exploitation of Mediterranean sponges as pharmaceutical sources is strongly encouraged to discover new compounds.

9.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34445761

RESUMO

Natural products of microbial origin have inspired most of the commercial pharmaceuticals, especially those from Actinobacteria. However, the redundancy of molecules in the discovery process represents a serious issue. The untargeted approach, One Strain Many Compounds (OSMAC), is one of the most promising strategies to induce the expression of silent genes, especially when combined with genome mining and advanced metabolomics analysis. In this work, the whole genome of the marine isolate Rhodococcus sp. I2R was sequenced and analyzed by antiSMASH for the identification of biosynthetic gene clusters. The strain was cultivated in 22 different growth media and the generated extracts were subjected to metabolomic analysis and functional screening. Notably, only a single growth condition induced the production of unique compounds, which were partially purified and structurally characterized by liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). This strategy led to identifying a bioactive fraction containing >30 new glycolipids holding unusual functional groups. The active fraction showed a potent antiviral effect against enveloped viruses, such as herpes simplex virus and human coronaviruses, and high antiproliferative activity in PC3 prostate cancer cell line. The identified compounds belong to the biosurfactants class, amphiphilic molecules, which play a crucial role in the biotech and biomedical industry.


Assuntos
Antivirais/metabolismo , Glicolipídeos/metabolismo , Rhodococcus/metabolismo , Animais , Antivirais/análise , Chlorocebus aethiops , Técnicas de Cultura , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/metabolismo , Genoma Bacteriano , Glicolipídeos/química , Humanos , Metaboloma , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células PC-3 , Rhodococcus/química , Rhodococcus/genética , Succinatos/metabolismo , Tensoativos/química , Tensoativos/metabolismo , Células Vero
10.
Microorganisms ; 9(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205451

RESUMO

Extreme marine environments are potential sources of novel microbial isolations with dynamic metabolic activity. Dietzia psychralcaliphila J1ID was isolated from sediments originated from Deception Island, Antarctica, grown over phenanthrene. This strain was also assessed for its emulsifying activity. In liquid media, Dietzia psychralcaliphila J1ID showed 84.66% degradation of phenanthrene examined with HPLC-PDA. The identification of metabolites by GC-MS combined with its whole genome analysis provided the pathway involved in the degradation process. Whole genome sequencing indicated a genome size of 4,216,480 bp with 3961 annotated genes. The presence of a wide range of monooxygenase and dioxygenase, as well as dehydrogenase catabolic genes provided the genomic basis for the biodegradation. The strain possesses the genetic compartments for a wide range of toxic aromatic compounds, which includes the benABCD and catABC clusters. COG2146, COG4638, and COG0654 through COG analysis confirmed the genes involved in the oxygenation reaction of the hydrocarbons by the strain. Insights into assessing the depletion of phenanthrene throughout the incubation process and the genetic components involved were obtained. This study indicates the degradation potential of the strain, which can also be further expanded to other model polyaromatic hydrocarbons.

11.
Microorganisms ; 9(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919419

RESUMO

Extremophilic microorganisms represent a unique source of novel natural products. Among them, cold adapted bacteria and particularly alpine microorganisms are still underexplored. Here, we describe the isolation and characterization of a novel Gram-positive, aerobic rod-shaped alpine bacterium (KRL4), isolated from sediments from the Karuola glacier in Tibet, China. Complete phenotypic analysis was performed revealing the great adaptability of the strain to a wide range of temperatures (5-40 °C), pHs (5.5-8.5), and salinities (0-15% w/v NaCl). Genome sequencing identified KRL4 as a member of the placeholder genus Exiguobacterium_A and annotation revealed that only half of the protein-encoding genes (1522 of 3079) could be assigned a putative function. An analysis of the secondary metabolite clusters revealed the presence of two uncharacterized phytoene synthase containing pathways and a novel siderophore pathway. Biological assays confirmed that the strain produces molecules with antioxidant and siderophore activities. Furthermore, intracellular extracts showed nematocidal activity towards C. elegans, suggesting that strain KRL4 is a source of anthelmintic compounds.

12.
Mar Drugs ; 19(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669858

RESUMO

Following the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns. For this reason, the disposal and recycling of these wastes has become a key issue to be resolved. With the growing attention of the circular economy, the exploitation of underused or discarded marine material can represent a sustainable strategy for the realization of a circular bioeconomy, with the production of materials with high added value. In this study, we underline the enormous role that fish waste can have in the socio-economic sector. This review presents the different compounds with high commercial value obtained by fish byproducts, including collagen, enzymes, and bioactive peptides, and lists their possible applications in different fields.


Assuntos
Peixes/metabolismo , Reciclagem/métodos , Resíduos/análise , Animais , Aquicultura , Pesqueiros , Eliminação de Resíduos/métodos
13.
Antioxidants (Basel) ; 9(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256101

RESUMO

The marine environment represents a prosperous existing resource for bioprospecting, covering 70% of the planet earth, and hosting a huge biodiversity. Advances in the research are progressively uncovering the presence of unknown microorganisms, which have evolved unique metabolic and genetic pathways for the production of uncommon secondary metabolites. Fungi have a leading role in marine bioprospecting since they represent a prolific source of structurally diverse bioactive metabolites. Several bioactive compounds from marine fungi have already been characterized including antibiotics, anticancer, antioxidants and antivirals. Nowadays, the search for natural antioxidant molecules capable of replacing those synthetic currently used, is an aspect that is receiving significant attention. Antioxidants can inactivate reactive oxygen and nitrogen species, preventing the insurgence of several degenerative diseases including cancer, autoimmune disorders, cardiovascular and neurodegenerative diseases. Moreover, they also find applications in different fields, including food preservation, healthcare and cosmetics. This review focuses on the production of antioxidants from marine fungi. We begin by proposing a survey of the available tools suitable for the evaluation of antioxidants, followed by the description of various classes of marine fungi antioxidants together with their extraction strategies. In addition, a view of the future perspectives and trends of these natural products within the "blue economy" is also presented.

14.
J Nat Prod ; 83(5): 1495-1504, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32275146

RESUMO

A wide range of prescreening tests for antimicrobial activity of 59 bacterial isolates from sediments of Ria Formosa Lagoon (Algarve, Portugal) disclosed Vibrio spartinae 3.6 as the most active antibacterial producing strain. This bacterial strain, which has not previously been submitted for chemical profiling, was subjected to de novo whole genome sequencing, which aided in the discovery and elucidation of a prodigiosin biosynthetic gene cluster that was predicted by the bioinformatic tool KEGG BlastKoala. Comparative genomics led to the identification of a new membrane di-iron oxygenase-like enzyme, annotated as Vspart_02107, which is likely to be involved in the biosynthesis of cycloprodigiosin and analogues. The combined genomics-metabolomics profiling of the strain led to the isolation and identification of one new branched-chain prodigiosin (5) and to the detection of two new cyclic forms. Furthermore, the evaluation of the minimum inhibitory concentrations disclosed the major prodigiosin as very effective against multi-drug-resistant pathogens including Stenotrophomonas maltophilia, a clinical isolate of Listeria monocytogenes, as well as some human pathogens reported by the World Health Organization as prioritized targets.


Assuntos
Antibacterianos/biossíntese , Indóis/química , Pirróis/química , Vibrio/genética , Vibrio/metabolismo , Antibacterianos/química , Bactérias/efeitos dos fármacos , Biologia Computacional , Ciclização , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genômica , Listeria monocytogenes/efeitos dos fármacos , Metabolômica , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização por Electrospray , Stenotrophomonas maltophilia/efeitos dos fármacos
15.
Mar Drugs ; 16(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30274274

RESUMO

The increasing emergence of new forms of multidrug resistance among human pathogenic bacteria, coupled with the consequent increase of infectious diseases, urgently requires the discovery and development of novel antimicrobial drugs with new modes of action. Most of the antibiotics currently available on the market were obtained from terrestrial organisms or derived semisynthetically from fermentation products. The isolation of microorganisms from previously unexplored habitats may lead to the discovery of lead structures with antibiotic activity. The deep-sea environment is a unique habitat, and deep-sea microorganisms, because of their adaptation to this extreme environment, have the potential to produce novel secondary metabolites with potent biological activities. This review covers novel antibiotics isolated from deep-sea microorganisms. The chemical classes of the compounds, their bioactivities, and the sources of organisms are outlined. Furthermore, the authors report recent advances in techniques and strategies for the exploitation of deep-sea microorganisms.


Assuntos
Antibacterianos/metabolismo , Água do Mar/microbiologia , Organismos Aquáticos/metabolismo , Bactérias/metabolismo , Ecossistema , Sedimentos Geológicos/microbiologia , Humanos
16.
Biotechnol Rep (Amst) ; 20: e00281, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30225207

RESUMO

Microbes are prolific sources of bioactive molecules; however, the cultivability issue has severely hampered access to microbial diversity. Novel secondary metabolites from as-yet-unknown or atypical microorganisms from extreme environments have realistic potential to lead to new drugs with benefits for human health. Here, we used a novel approach that mimics the natural environment by using a Miniaturized Culture Chip allowing the isolation of several bacterial strains from Antarctic shallow water sediments under near natural conditions. A Gram-negative Antarctic bacterium belonging to the genus Aequorivita was subjected to further analyses. The Aequorivita sp. genome was sequenced and a bioinformatic approach was applied to identify biosynthetic gene clusters. The extract of the Aequorivita sp. showed antimicrobial and anthelmintic activity towards Multidrug resistant bacteria and the nematode Caenorhabditis elegans. This is the first multi-approach study exploring the genomics and biotechnological potential of the genus Aequorivita that is a promising candidate for pharmaceutical applications.

17.
Res Microbiol ; 167(6): 492-500, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27154031

RESUMO

Marine fungi represent an important but still largely unexplored source of novel and potentially bioactive secondary metabolites. The antimicrobial activity of nine sterile mycelia isolated from the green alga Flabellia petiolata collected from the Mediterranean Sea was tested on four antibiotic-resistant bacterial strains using extracellular and intracellular extracts obtained from each fungal strain. The isolated fungi were identified at the molecular level and assigned to one of the Dothideomycetes, Sordariomycetes or Eurotiomycetes classes. Following assessment of inhibition of bacterial growth (IC50), all crude extracts were subjected to preliminary (1)H NMR and TLC analysis. According to preliminary pharmacologic and spectroscopic/chromatographic results, extracts of fungal strains MUT 4865, classified as Beauveria bassiana, and MUT 4861, classified as Microascacea sp.2, were selected for LC-HRMS analysis. Chemical profiling of antibacterial extracts from MUT 4861 and MUT 4865 by LC HRMS allowed identification of the main components of the crude extracts. Several sphingosine bases were identified, including a compound previously unreported from natural sources, which gave a rationale to the broad spectrum of antibacterial activity exhibited.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Produtos Biológicos/farmacologia , Fungos/química , Fungos/classificação , Antibacterianos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Clorófitas/microbiologia , Cromatografia em Camada Fina , Fungos/isolamento & purificação , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Mar Mediterrâneo
18.
Mar Drugs ; 14(5)2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27128927

RESUMO

Microorganisms living in extreme environments represent a huge reservoir of novel antimicrobial compounds and possibly of novel chemical families. Antarctica is one of the most extraordinary places on Earth and exhibits many distinctive features. Antarctic microorganisms are well known producers of valuable secondary metabolites. Specifically, several Antarctic strains have been reported to inhibit opportunistic human pathogens strains belonging to Burkholderia cepacia complex (Bcc). Herein, we applied a biodiscovery pipeline for the identification of anti-Bcc compounds. Antarctic sub-sea sediments were collected from the Ross Sea, and used to isolate 25 microorganisms, which were phylogenetically affiliated to three bacterial genera (Psychrobacter, Arthrobacter, and Pseudomonas) via sequencing and analysis of 16S rRNA genes. They were then subjected to a primary cell-based screening to determine their bioactivity against Bcc strains. Positive isolates were used to produce crude extracts from microbial spent culture media, to perform the secondary screening. Strain Pseudomonas BNT1 was then selected for bioassay-guided purification employing SPE and HPLC. Finally, LC-MS and NMR structurally resolved the purified bioactive compounds. With this strategy, we achieved the isolation of three rhamnolipids, two of which were new, endowed with high (MIC < 1 µg/mL) and unreported antimicrobial activity against Bcc strains.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Lipídeos/química , Lipídeos/farmacologia , Regiões Antárticas , Arthrobacter/química , Arthrobacter/genética , Complexo Burkholderia cepacia/química , Complexo Burkholderia cepacia/genética , Genes Bacterianos/genética , Filogenia , Pseudomonas/química , Pseudomonas/genética , Psychrobacter/química , Psychrobacter/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA