Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 21(3): e2000377, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33393217

RESUMO

Vascular-targeted drug delivery remains an attractive platform for therapeutic and diagnostic interventions in human diseases. This work focuses on the development of a poly-lactic-co-glycolic-acid (PLGA)-based multistage delivery system (MDS). MDS consists of two stages: a micron-sized PLGA outer shell and encapsulated drug-loaded PLGA nanoparticles. Nanoparticles with average diameters of 76, 119, and 193 nm are successfully encapsulated into 3-6 µm MDS. Sustained in vitro release of nanoparticles from MDS is observed for up to 7 days. Both MDS and nanoparticles arebiocompatible with human endothelial cells. Sialyl-Lewis-A (sLeA ) is successfully immobilized on the MDS and nanoparticle surfaces to enable specific targeting of inflamed endothelium. Functionalized MDS demonstrates a 2.7-fold improvement in endothelial binding compared to PLGA nanoparticles from human blood laminar flow. Overall, the presented results demonstrate successful development and characterization of MDS and suggest that MDS can serve as an effective drug carrier, which can enhance the margination of nanoparticles to the targeted vascular wall.


Assuntos
Sistemas de Liberação de Medicamentos , Endotélio Vascular/fisiologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Morte Celular , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/síntese química
2.
Biomed Opt Express ; 11(8): 4255-4274, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923040

RESUMO

Optical coherence tomography (OCT) images largely lack molecular information or molecular contrast. We address that issue here, reporting on the development of biodegradable micro and nano-spheres loaded with methylene blue (MB) as molecular contrast agents for OCT. MB is a constituent of FDA approved therapies and widely used as a dye in off-label clinical applications. The sequestration of MB within the polymer reduced toxicity and improved signal strength by drastically reducing the production of singlet oxygen and leuco-MB. The former leads to tissue damage and the latter to reduced image contrast. The spheres are also strongly scattering which improves molecular contrast signal localization and enhances signal strength. We demonstrate that these contrast agents may be imaged using both pump-probe OCT and photothermal OCT, using a 830 nm frequency domain OCT system and a 1.3 µm swept source OCT system. We also show that these contrast agents may be functionalized and targeted to specific receptors, e.g. the VCAM receptor known to be overexpressed in inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA