Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 102: 117671, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452407

RESUMO

The search for novel anticancer drugs is essential to expand treatment options, overcome drug resistance, reduce toxicity, promote innovation, and tackle the economic impact. The importance of these studies lies in their contribution to advancing cancer research and enhancing patient outcomes in the battle against cancer. Here, we developed new asymmetric hybrids containing two different naphthoquinones linked by a 1,2,3-1H-triazole nucleus, which are potential new drugs for cancer treatment. The antitumor activity of the novel compounds was tested using the breast cancer cell lines MCF-7 and MDA-MB-231, using the non-cancer cell line MCF10A as control. Our results showed that two out of twenty-two substances tested presented potential antitumor activity against the breast cancer cell lines. These potential drugs, named here 12g and 12h were effective in reducing cell viability and promoting cell death of the tumor cell lines, exhibiting minimal effects on the control cell line. The mechanism of action of the novel drugs was assessed revealing that both drugs increased reactive oxygen species production with consequent activation of the AMPK pathway. Therefore, we concluded that 12g and 12h are novel AMPK activators presenting selective antitumor effects.


Assuntos
Antineoplásicos , Neoplasias da Mama , Naftoquinonas , Humanos , Feminino , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Triazóis/farmacologia , Naftoquinonas/farmacologia , Proteínas Quinases Ativadas por AMP , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais
2.
J Inorg Biochem ; 248: 112345, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562318

RESUMO

Two cobalt(III) complexes containing different ß-ketoesters, namely [CoIII(L1)(py2en)](ClO4)2·H2O (1) and [CoIII(L2)(py2en)](ClO4)2 (2) (py2en = N,N'-bis(pyridin-2-ylmethyl)ethylenediamine; L1- = methylacetoacetate; L2- = ethyl 4-chloroacetoacetate) have been prepared and investigated as prototypes of bioreductive prodrugs. The presence of ß-ketoester and py2en ligands in 1 and 2, as well as the perchlorate counterions, was supported by IR spectroscopy and CHN elemental analysis. The composition molecular structure of both complexes was confirmed by NMR spectroscopy and ESI mass spectrometry. Structural information was also obtained for 2via X-ray diffraction analysis. The redox properties indicate that 1 and 2 are suitable for reduction under biological conditions. Investigation of DNA-interacting suggest that 1 and 2 bind DNA via electrostatic forces. Both complexes may be employed as possible platforms for the delivery of biologically active compounds, since their reaction with ascorbic acid in PBS at pH 6.2 and 7.4 at 37°C results in the release of the ß-ketoester ligands upon Co(III)/Co(II) reduction.


Assuntos
Cobalto , Pró-Fármacos , Cobalto/química , Ligantes , Estrutura Molecular , Pró-Fármacos/química , Cristalografia por Raios X
3.
Plants (Basel) ; 12(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36771605

RESUMO

In this article, we propose to explore the chemical interaction between Pseudosphinx tetrio L. and Allamanda cathartica L. using different analytical methods, including an innovative electrochemical approach (called electrochemical ecology) and multivariate analysis, and we investigate the potential antimicrobial effects (antibacterial and antifungal activities) of this interaction in order to gain a better understanding of their specific interaction. The analytical study presents a similar chemical profile between the leaves of healthy and herbivorous A. cathartica and the excretions of the caterpillars. The similar analytical profile of the leaves of A. cathartica and the excretions of P. tetrio, and the difference with the caterpillar bodies, suggests a selective excretion of compounds by the caterpillar. The measured antimicrobial activities support the physicochemical tests. The natural products found selectively in the excretions (rather than in the body) could explain the ability of P. tetrio to feed on this toxic Apocynaceae species.

4.
ACS Omega ; 7(19): 16260-16269, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601340

RESUMO

Neurodegenerative disorders, caused by prone-to-aggregation proteins, such as Alzheimer disease or Huntington disease, share other traits such as disrupted homeostasis of essential metal ions, like copper. In this context, in an attempt to identify Cu2+ chelating agents, we study several organic compounds (ethylenediaminetetraacetic acid, phenylenediamine, metformin, salicylate, and trehalose) and organic extracts obtained from Bacopa monnieri L., which has been used in Ayurvedic therapies and presented a broad spectrum of biological properties. For this purpose, UV-visible spectroscopy analysis and electrochemical measurements were performed. Further, biological assays were performed in Caenorhabditis elegans models of polyQ toxicity, in an attempt to obtain better insights on neurodegenerative disorders.

5.
PLoS Negl Trop Dis ; 15(11): e0009951, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780470

RESUMO

With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2',6'-dihydroxy-4'-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2',4',6'- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones.


Assuntos
Antiprotozoários/uso terapêutico , Chalcona/metabolismo , Chalcona/farmacologia , Citosol/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Peroxidases/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/farmacologia , Células Cultivadas , Chalcona/administração & dosagem , Chalcona/análogos & derivados , Citosol/enzimologia , Citosol/parasitologia , Descoberta de Drogas , Humanos , Leishmania/classificação , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Peroxidases/metabolismo , Proteínas de Protozoários/metabolismo
6.
J Biol Inorg Chem ; 26(6): 727-740, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34453615

RESUMO

Two square-planar coordination compounds, namely [Cu(CPYA)Cl2] (1) and [Pd(CPYA)Cl2] (2), were prepared from the ligand 4-chloro-N-(pyridin-2-ylmethyl)aniline (CPYA) and two chloride salts, and were fully characterized, including by X-ray diffraction. Spectroscopic, electrophoretic and AFM studies revealed that the two isostructural compounds were interacting differently with DNA. In both cases, the initial interaction involves electrostatic contacts of the CPYA ligand in the minor groove (as suggested by molecular docking), but subsequent strong binding occurs with the palladium(II) complex 2, whereas the binding with the copper complex 1 is weaker and concentration dependent. The strong binding of 2 eventually leads to the cleavage of the double strand and the redox activity of 1 allows to oxidatively cleave the biomolecule.


Assuntos
Cloretos/química , Cobre/química , DNA/química , Paládio/química , Dicroísmo Circular , Cristalografia por Raios X , Corantes Fluorescentes , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular
7.
J Inorg Biochem ; 211: 111211, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32805459

RESUMO

Differentiation between hypoxic and normoxic tissues have been exploited for the development of selective chemotherapeutic agents. In this context, cobalt(III)-based coordination compounds have been designed and investigated as prospective hypoxia-responsive drug delivery systems. Three cobalt(III) complexes, namely [CoIII(esc)(py2en)]ClO4·(CH3OH)2 (1) [CoIII(esc)(TPA)]ClO4·3H2O (2) and [CoIII(bipy)2(esc)]ClO4·2.5H2O (3) (py2en = N,N'-bis(pyridin-2-ylmethyl)ethylenediamine, TPA = tris(2-pyridylmethyl)amine, bipy = 2,2'-bipyridine and esc = 6,7-dihydroxycoumarin or esculetin), were prepared and investigated as potential carriers of esculetin. The spectroscopic and electrochemical properties of 1-3 were investigated and compared. Reactions of the complexes with biologically relevant reducing agents, viz. ascorbic acid, cysteine and glutathione, were monitored spectroscopically for 24 h, in pH 6.2 and 7.4 PBS phosphate buffer saline (PBS) solutions at 37 °C, under air, argon and dioxygen atmospheres. Dissociation of esculetin was observed upon Co3+/Co2+ reduction preferably under hypoxic conditions, with more effective conversion rates for 3 > 2 > 1. These results illustrate the importance to modulate the Co3+/Co2+ redox potential through the donor-acceptor properties of the ancillary ligands. Complex 3 is cytotoxic against HCT-116 but not against HT-29 and HEK-293 cells. In addition, DNA-binding studies indicate that interactions of 1 and 3 with the biomolecule are electrostatic.


Assuntos
Cobalto/química , Complexos de Coordenação/farmacologia , Neoplasias/tratamento farmacológico , Umbeliferonas/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Sistemas de Liberação de Medicamentos , Células HEK293 , Células HT29 , Humanos , Neoplasias/patologia , Umbeliferonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA