Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nature ; 620(7973): 344-350, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495695

RESUMO

Kimberlites are volatile-rich, occasionally diamond-bearing magmas that have erupted explosively at Earth's surface in the geologic past1-3. These enigmatic magmas, originating from depths exceeding 150 km in Earth's mantle1, occur in stable cratons and in pulses broadly synchronous with supercontinent cyclicity4. Whether their mobilization is driven by mantle plumes5 or by mechanical weakening of cratonic lithosphere4,6 remains unclear. Here we show that most kimberlites spanning the past billion years erupted about 30 million years (Myr) after continental breakup, suggesting an association with rifting processes. Our dynamical and analytical models show that physically steep lithosphere-asthenosphere boundaries (LABs) formed during rifting generate convective instabilities in the asthenosphere that slowly migrate many hundreds to thousands of kilometres inboard of rift zones. These instabilities endure many tens of millions of years after continental breakup and destabilize the basal tens of kilometres of the cratonic lithosphere, or keel. Displaced keel is replaced by a hot, upwelling mixture of asthenosphere and recycled volatile-rich keel in the return flow, causing decompressional partial melting. Our calculations show that this process can generate small-volume, low-degree, volatile-rich melts, closely matching the characteristics expected of kimberlites1-3. Together, these results provide a quantitative and mechanistic link between kimberlite episodicity and supercontinent cycles through progressive disruption of cratonic keels.

3.
Environ Sci Technol ; 55(21): 14968-14978, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34644501

RESUMO

We report a new, autonomous Lab-on-Chip (LOC) microfluidic pH sensor with a 6000 m depth capability, ten times the depth capability of the state of the art autonomous spectrophotometric sensor. The pH is determined spectrophotometrically using purified meta-Cresol Purple indicator dye offering high precision (<0.001 pH unit measurement reproducibility), high frequency (every 8 min) measurements on the total proton scale from the surface to the deep ocean (to 600 bar). The sensor requires low power (3 W during continuous operation or ∼1300 J per measurement) and low reagent volume (∼3 µL per measurement) and generates small waste volume (∼2 mL per measurement) which can be retained during deployments. The performance of the LOC pH sensor was demonstrated on fixed and moving platforms over varying environmental salinity, temperature, and pressure conditions. Measurement accuracy was +0.003 ± 0.022 pH units (n = 47) by comparison with validation seawater sample measurements in coastal waters. The combined standard uncertainty of the sensor in situ pHT measurements was estimated to be ≤0.009 pH units at pH 8.5, ≤ 0.010 pH units at pH 8.0, and ≤0.014 pH units at pH 7.5. Integrated on autonomous platforms, this novel sensor opens new frontiers for pH observations, especially within the largest and most understudied ecosystem on the planet, the deep ocean.


Assuntos
Ecossistema , Água do Mar , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes , Espectrofotometria
4.
J Biomed Mater Res B Appl Biomater ; 108(8): 3311-3322, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32596955

RESUMO

The good biocompatibility and corrosion resistance of the bulk CoCrMo alloy has resulted in it being used in the manufacture of implants and load bearing medical devices. These devices, however, can release wear and corrosion products which differ from the composition of the bulk CoCrMo alloy. The physicochemical characteristics of the particles and the associated in vivo reactivity are dictated by the wear mechanisms and electrochemical conditions at the sites of material loss. Debris released from CoCrMo hip bearings, taper junctions, or cement-stem interfaces can, therefore, have different chemical and morphological characteristics, which provide them with different in vivo toxicities. Here, we propose to assess and compare the characteristics of the particles released in vivo from CoCrMo tapers and cement-stem interfaces which have received less attention compared to debris originating from the hip bearings. The study uses state-of-art characterization techniques to provide a detailed understanding of the size, morphology, composition, and chemistry of the particles liberated from the wear and corrosion flakes from revised hip replacements, with an enzymatic treatment. The phase analyses identified Cr2 O3 nanoparticles released from tapers and cement-stem interfaces, whose composition did not vary with origin or particle morphology. The size distributions showed significantly smaller particles were released from the stems, compared to the particles originating from the corresponding tapers. The investigation demonstrates that the tribocorrosive processes occurring at the taper and stem interfaces both result in Cr2 O3 nanoparticle formation.


Assuntos
Artroplastia de Quadril , Ligas de Cromo/química , Prótese de Quadril , Nanopartículas/química , Cimentos Ósseos , Ligas de Cromo/toxicidade , Compostos de Cromo/química , Corrosão , Humanos , Nanopartículas/toxicidade , Tamanho da Partícula , Suporte de Carga
5.
Rapid Commun Mass Spectrom ; 33(10): 959-968, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30866057

RESUMO

RATIONALE: Boron isotope analysis of marine carbonates by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) offers the potential for rapid sample throughput, and the means to examine micron-scale variations in the δ11 B signatures of fossil skeletons and shells/tests of marine organisms. Existing studies demonstrate an acceptable level of reproducibility is achievable, but also typically show a level of accuracy outside the limits required by most applications. Here we investigate matrix interference effects as a cause of inaccuracy and imprecision. METHODS: Analyses were performed on a standard format Thermo Scientific Neptune Plus MC-ICP mass spectrometer coupled to a New Wave Research 193 nm ArF laser ablation system. The effects of matrix interference on δ11 B analysis were investigated through analyses of a set of reference materials with differing B/Ca ratios. Three approaches to correct for matrix-induced effects were trialled: (1) use of matrix-matched standards, (2) utilisation of the relationship between δ11 B inaccuracy and11 B/43 Ca, 11 B/40 ArCa4+ or 11 B/Cainterference from three reference materials with known δ11 B values and varying B/Ca ratios, and (3) direct characterisation of the (sloping) interference itself. RESULTS: Matrix interference from scattered Ca ions on 10 B can impede both the accuracy and the reproducibility of δ11 B analysis by LA-MC-ICP-MS. Based on analyses of two in-house reference materials, deep sea coral PS69/3181 and inorganic calcite UWC-1, we find approach 2, following the 11 B/Cainterference relationship, gives the best mean accuracies (within 0.4‰ of solution values) and external reproducibilities (± 0.5‰ 2 SD for PS69/3181). This approach has been applied to analyses of an annual growth cycle of a Siderastrea siderea coral and eight Cibicidoides wuellerstorfi benthic foraminifera. Both coral and foraminifera data match solution MC-ICP-MS analyses within reported uncertainties. CONCLUSIONS: LA-MC-ICP-MS can produce accurate and precise δ11 B data to a 0.5‰ (2σ) level on <0.3 ng B after correction for Ca interference effects.

6.
J Biomed Mater Res B Appl Biomater ; 107(2): 424-434, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29663665

RESUMO

The in vivo release of wear debris and corrosion products from the metallic interfaces of total hip replacements is associated with a wide spectrum of adverse body reactions and systemic manifestations. The origin of debris and the electrochemical conditions at the sites of material loss both play a role in determining the physicochemical characteristics of the particles, and thus influence their in vivo reactivity. Debris retrieved from revised CoCrMo tapers and cement-stem interfaces consists of heterogeneous flakes that comprise mechanically mixed metal particles, corrosion products and organic material. Detailed investigation of the size and composition of the metal debris contained within these composites requires the digestion of the flakes to release the small metal particles. Here, we compare alkaline and enzymatic digestion methods that both aim to fragment the flakes and reveal their smallest building blocks. The characterization of debris cleaned with both methods revealed crystalline Cr oxide nanoparticles and clusters. Comparison between the treatments showed that the alkaline method is more efficient in fragmenting the flakes and provided cleaner and generally smaller nanoparticles than exhibited in debris released with the enzymatic treatment. The provision of cleaner nanoparticles from the alkaline method also allows the physicochemical properties of the particles to be more clearly identified. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 424-434, 2019.


Assuntos
Artroplastia de Quadril , Interface Osso-Implante , Prótese de Quadril/efeitos adversos , Teste de Materiais , Falha de Prótese , Vitálio , Humanos , Vitálio/análise , Vitálio/química
7.
J Biomed Mater Res B Appl Biomater ; 105(7): 2027-2033, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27376956

RESUMO

The occurrence of damage on polished femoral stems has been widely reported in the literature, and bone cement has been implicated in a tribocorrosive failure process. However, the mechanisms of cement-mediated damage and the impact of cement formulation on this process are not well understood. In this study, 13 Zimmer CPT polished femoral stems, and the corresponding cement specimens were retrieved at revision surgery and analyzed using high-resolution imaging techniques. Surface damage attributed to tribocorrosion was observed on all stems. Corrosion product, in the form of black flaky surface debris, was observed on the surface of cement specimens; both energy-dispersive X-ray spectroscopy and inductively coupled plasma mass spectrometry(ICP-MS) confirmed the presence of cobalt and chromium, with the ICP-MS showing much higher levels of Cr compared to Co when compared to the original stem material. Agglomerates of ZrO2 radiopacifier were also identified on the cement surface and, in some cases, showed evidence of abrasive wear; the size of these particles correlated well with elliptical pitting evident on the surfaces of the corresponding stems. This evidence supports the hypothesis that agglomerates of hard radiopacifier particles within the cement may induce a wear-dominated tribocorrosive interaction at the stem-cement interface that damages the surface of polished CoCr femoral stems. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2027-2033, 2017.


Assuntos
Interface Osso-Implante/patologia , Ligas de Cromo/efeitos adversos , Análise de Falha de Equipamento , Fêmur/patologia , Fixadores Internos/efeitos adversos , Metilmetacrilato/efeitos adversos , Adulto , Idoso , Corrosão , Feminino , Fêmur/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
8.
Toxicol Sci ; 145(1): 98-107, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25673499

RESUMO

We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1-11.1 µg/cm(2)) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research.


Assuntos
Brônquios/efeitos dos fármacos , Cílios/efeitos dos fármacos , Material Particulado/toxicidade , Meios de Transporte , Brônquios/citologia , Células Cultivadas , Células Epiteliais/citologia , Humanos , Tamanho da Partícula
9.
Environ Microbiol Rep ; 6(2): 159-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24596289

RESUMO

Subaerial explosive volcanism contributes substantial amounts of material to the oceans, but little is known about the impact of volcanic ash on sedimentary microbial activity. We have studied anammox communities in deep sea sediments near the volcanically active island of Montserrat, Lesser Antilles. The rates of anammox and denitrification in the sediments were measured using (15)N isotope pairing incubation experiments, while 16S rRNA genes were used to examine anammox community structures. The higher anammox rates were measured in sediment containing the lower accumulation of volcanic ash in the surface sediments, while the lowest activities were found in sediments with the highest ash deposit. 16S rRNA gene analysis revealed the presence of 'Candidatus Scalindua spp.' in the sediments. The lowest diversity of anammox bacteria was observed in the sediments with the highest ash deposit. Overall, this study demonstrates that the deposition of volcanic material in deep sea sediments has negative impacts on activity and diversity of the anammox community. Since anammox may account for up to 79% of N2 production in marine ecosystems, periods of extensive explosive volcanism in Earth history may have had a hitherto unrecognized negative impact on the sedimentary nitrogen removal processes.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Ecossistema , Sedimentos Geológicos/microbiologia , Erupções Vulcânicas/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Desnitrificação , Sedimentos Geológicos/química , Dados de Sequência Molecular , Nitrogênio/metabolismo , Oxirredução , Filogenia , Água do Mar/microbiologia
10.
Environ Sci Technol ; 47(8): 3614-22, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23477491

RESUMO

Underground railway stations are known to have elevated particulate matter (PM) loads compared to ambient air. As these particles are derived from metal-rich sources and transition metals may pose a risk to health by virtue of their ability to catalyze generation of reactive oxygen species (ROS), their potential enrichment in underground environments is a source of concern. Compared to coarse (PM10) and fine (PM2.5) particulate fractions of underground railway airborne PM, little is known about the chemistry of the ultrafine (PM0.1) fraction that may contribute significantly to particulate number and surface area concentrations. This study uses inductively coupled plasma mass spectrometry and ion chromatography to compare the elemental composition of size-fractionated underground PM with woodstove, roadwear generator, and road tunnel PM. Underground PM is notably rich in Fe, accounting for greater than 40% by mass of each fraction, and several other transition metals (Cu, Cr, Mn, and Zn) compared to PM from other sources. Importantly, ultrafine underground PM shows similar metal-rich concentrations as the coarse and fine fractions. Scanning electron microscopy revealed that a component of the coarse fraction of underground PM has a morphology indicative of generation by abrasion, absent for fine and ultrafine particulates, which may be derived from high-temperature processes. Furthermore, underground PM generated ROS in a concentration- and size-dependent manner. This study suggests that the potential health effects of exposure to the ultrafine fraction of underground PM warrant further investigation as a consequence of its greater surface area/volume ratio and high metal content.


Assuntos
Fenômenos Químicos , Material Particulado/química , Meios de Transporte , Ânions/análise , Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fluoresceínas , Fluorescência , Humanos , Metais/análise , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/análise
11.
Sci Rep ; 1: 21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355540

RESUMO

Knowing the distribution of marine animals is central to understanding climatic and other environmental influences on population ecology. This information has proven difficult to gain through capture-based methods biased by capture location. Here we show that marine location can be inferred from animal tissues. As the carbon isotope composition of animal tissues varies with sea surface temperature, marine location can be identified by matching time series of carbon isotopes measured in tissues to sea surface temperature records. Applying this technique to populations of Atlantic salmon (Salmo salar L.) produces isotopically-derived maps of oceanic feeding grounds, consistent with the current understanding of salmon migrations, that additionally reveal geographic segregation in feeding grounds between individual philopatric populations and age-classes. Carbon isotope ratios can be used to identify the location of open ocean feeding grounds for any pelagic animals for which tissue archives and matching records of sea surface temperature are available.


Assuntos
Migração Animal/fisiologia , Organismos Aquáticos/classificação , Organismos Aquáticos/fisiologia , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Monitoramento de Radiação/métodos , Salmão/fisiologia , Animais , Oceanos e Mares , Salmão/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA