Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(8): 111704, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417849

RESUMO

MYC is dysregulated in >50% of cancers, but direct targeting of MYC has been clinically unsuccessful. Targeting downstream MYC effector pathways represents an attractive alternative. MYC regulates alternative mRNA splicing, but the mechanistic links between MYC and the splicing machinery in cancer remain underexplored. Here, we identify a network of co-expressed splicing factors (SF-modules) in MYC-active breast tumors. Of these, one is a pan-cancer SF-module correlating with MYC activity across 33 tumor types. In mammary cell models, MYC activation leads to co-upregulation of pan-cancer module SFs and to changes in >4,000 splicing events. In breast cancer organoids, co-overexpression of the pan-cancer SF-module induces MYC-regulated splicing events and increases organoid size and invasiveness, while knockdown decreases organoid size. Finally, we uncover a MYC-activity pan-cancer splicing signature correlating with survival across tumor types. Our findings provide insight into the mechanisms of MYC-regulated splicing and for the development of therapeutics for MYC-driven tumors.


Assuntos
Neoplasias da Mama , Oncogenes , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Proteínas Proto-Oncogênicas c-myc/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/genética
2.
Front Immunol ; 13: 773982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330908

RESUMO

The rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. Using pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.1.298, variants of interest (VOI) B.1.617.1 (Kappa), and four VOCs, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), including the B.1.617.2 K417N, informally known as Delta Plus. We utilised the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin to report neutralisation antibody levels in International Units per mL. Our data demonstrate a significant reduction in the ability of first wave convalescent sera to neutralise the VOCs. Patients and HCWs with more severe COVID-19 were found to have higher antibody titres and to neutralise the VOCs more effectively than individuals with milder symptoms. Using an estimated threshold for 50% protection, 54 IU/mL, we found most asymptomatic and mild cases did not produce titres above this threshold.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/terapia , Humanos , Imunização Passiva , SARS-CoV-2/genética , Índice de Gravidade de Doença , Soroterapia para COVID-19
3.
Front Immunol ; 12: 748291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867975

RESUMO

Precision monitoring of antibody responses during the COVID-19 pandemic is increasingly important during large scale vaccine rollout and rise in prevalence of Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2) variants of concern (VOC). Equally important is defining Correlates of Protection (CoP) for SARS-CoV-2 infection and COVID-19 disease. Data from epidemiological studies and vaccine trials identified virus neutralising antibodies (Nab) and SARS-CoV-2 antigen-specific (notably RBD and S) binding antibodies as candidate CoP. In this study, we used the World Health Organisation (WHO) international standard to benchmark neutralising antibody responses and a large panel of binding antibody assays to compare convalescent sera obtained from: a) COVID-19 patients; b) SARS-CoV-2 seropositive healthcare workers (HCW) and c) seronegative HCW. The ultimate aim of this study is to identify biomarkers of humoral immunity that could be used to differentiate severe from mild or asymptomatic SARS-CoV-2 infections. Some of these biomarkers could be used to define CoP in further serological studies using samples from vaccination breakthrough and/or re-infection cases. Whenever suitable, the antibody levels of the samples studied were expressed in International Units (IU) for virus neutralisation assays or in Binding Antibody Units (BAU) for ELISA tests. In this work we used commercial and non-commercial antibody binding assays; a lateral flow test for detection of SARS-CoV-2-specific IgG/IgM; a high throughput multiplexed particle flow cytometry assay for SARS-CoV-2 Spike (S), Nucleocapsid (N) and Receptor Binding Domain (RBD) proteins); a multiplex antigen semi-automated immuno-blotting assay measuring IgM, IgA and IgG; a pseudotyped microneutralisation test (pMN) and an electroporation-dependent neutralisation assay (EDNA). Our results indicate that overall, severe COVID-19 patients showed statistically significantly higher levels of SARS-CoV-2-specific neutralising antibodies (average 1029 IU/ml) than those observed in seropositive HCW with mild or asymptomatic infections (379 IU/ml) and that clinical severity scoring, based on WHO guidelines was tightly correlated with neutralisation and RBD/S antibodies. In addition, there was a positive correlation between severity, N-antibody assays and intracellular virus neutralisation.


Assuntos
COVID-19/imunologia , Convalescença , Imunidade Humoral , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Biomarcadores/sangue , COVID-19/sangue , COVID-19/diagnóstico , Teste Sorológico para COVID-19/normas , Calibragem , Humanos , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/imunologia , Padrões de Referência , Índice de Gravidade de Doença
4.
Front Immunol ; 12: 681636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222351

RESUMO

The emergence of COVID-19 has emphasised that biological assay data must be analysed quickly to develop safe, effective and timely vaccines/therapeutics. For viruses such as SARS-CoV-2, the primary way of measuring immune correlates of protection is through assays such as the pseudotype microneutralisation (pMN) assay, thanks to its safety and versatility. However, despite the presence of existing tools for data analysis such as PRISM and R the analysis of these assays remains cumbersome and time-consuming. We introduce an open-source R Shiny web application and R library (AutoPlate) to accelerate data analysis of dose-response curve immunoassays. Using example data from influenza studies, we show that AutoPlate improves on available analysis software in terms of ease of use, flexibility and speed. AutoPlate (https://philpalmer.shinyapps.io/AutoPlate/) is a tool for the use of laboratories and wider scientific community to accelerate the analysis of biological assays in the development of viral vaccines and therapeutics.


Assuntos
COVID-19/diagnóstico , Imunoensaio/estatística & dados numéricos , Vírus da Influenza A/fisiologia , Influenza Humana/diagnóstico , SARS-CoV-2/fisiologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Humanos , Imunoensaio/normas , Controle de Qualidade , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA