Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 260: 110134, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208979

RESUMO

Autism spectrum disorders (ASD) are highly heterogeneous neurodevelopmental diseases. Epidemiological data report that males have been diagnosed with autism more frequently than females. However, recent studies hypothesize that females' low incidence might be underestimated due to standard clinical measures of ASD behavioural symptoms, mostly derived from males. Indeed, up to now, ASD mouse models focused mainly on males, considering the prevalence of the diagnosis in that sex. Regarding ASD aetiopathogenesis, it has been recently reported that oxidative stress might be implicated in its onset and development, suggesting an association with ASD typical repetitive behaviours that still need to be disentangled. Here, we investigated possible behavioural and molecular sex-related differences by using the BTBR mouse model of idiopathic ASD. To this aim, animals were exposed to behavioural tests related to different ASD core symptoms and comorbidities, i.e. stereotyped repertoire, social dysfunctions, hyperlocomotion and risk-taking behaviours. Moreover, we analyzed hippocampal levels of pro-oxidant and anti-oxidant enzymes, together with biomarkers of oxidative stress and lipid peroxidation. Our results showed that BTBR females did not display the same patterns for repetitive behaviours as the male counterpart. From a biomolecular point of view, we found an increase in oxidative stress and pro-oxidant enzymes, accompanied by deficient enzymatic anti-oxidant response, only in BTBR males compared to C57BL/6 male mice, while no differences were retrieved in females. Overall, our study suggests that in females there is an urgent need to depict the distinct ASD symptomatology, accompanied by the identification of sex-specific pharmacological targets.


Assuntos
Transtorno do Espectro Autista , Modelos Animais de Doenças , Hipocampo , Estresse Oxidativo , Caracteres Sexuais , Animais , Transtorno do Espectro Autista/metabolismo , Hipocampo/metabolismo , Feminino , Masculino , Camundongos , Estresse Oxidativo/fisiologia , Comportamento Estereotipado/fisiologia , Comportamento Estereotipado/efeitos dos fármacos , Oxirredução , Comportamento Animal/fisiologia , Camundongos Endogâmicos C57BL , Peroxidação de Lipídeos/fisiologia , Assunção de Riscos
2.
Transl Psychiatry ; 14(1): 193, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632257

RESUMO

Autism Spectrum Disorders (ASD) are principally diagnosed by three core behavioural symptoms, such as stereotyped repertoire, communication impairments and social dysfunctions. This complex pathology has been linked to abnormalities of corticostriatal and limbic circuits. Despite experimental efforts in elucidating the molecular mechanisms behind these abnormalities, a clear etiopathogenic hypothesis is still lacking. To this aim, preclinical studies can be really helpful to longitudinally study behavioural alterations resembling human symptoms and to investigate the underlying neurobiological correlates. In this regard, the BTBR T+ Itpr3tf/J (BTBR) mice are an inbred mouse strain that exhibits a pattern of behaviours well resembling human ASD-like behavioural features. In this study, the BTBR mice model was used to investigate neurochemical and biomolecular alterations, regarding Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), together with GABAergic, glutamatergic, cholinergic, dopaminergic and noradrenergic neurotransmissions and their metabolites in four different brain areas, i.e. prefrontal cortex, hippocampus, amygdala and hypothalamus. In our results, BTBR strain reported decreased noradrenaline, acetylcholine and GABA levels in prefrontal cortex, while hippocampal measurements showed reduced NGF and BDNF expression levels, together with GABA levels. Concerning hypothalamus, no differences were retrieved. As regarding amygdala, we found reduced dopamine levels, accompanied by increased dopamine metabolites in BTBR mice, together with decreased acetylcholine, NGF and GABA levels and enhanced glutamate content. Taken together, our data showed that the BTBR ASD model, beyond its face validity, is a useful tool to untangle neurotransmission alterations that could be underpinned to the heterogeneous ASD-like behaviours, highlighting the crucial role played by amygdala.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Humanos , Transtorno Autístico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Acetilcolina , Dopamina , Fator de Crescimento Neural/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Transmissão Sináptica/fisiologia , Transtorno do Espectro Autista/metabolismo , Tonsila do Cerebelo/metabolismo , Ácido gama-Aminobutírico , Modelos Animais de Doenças
3.
Artigo em Inglês | MEDLINE | ID: mdl-38242425

RESUMO

Stressful events during pregnancy impact on the progeny neurodevelopment. However, little is known about preconceptional stress effects. The rat social isolation represents an animal model of chronic stress inducing a variety of dysfunctions. Moreover, social deprivation during adolescence interferes with key neurodevelopmental processes. Here, we investigated the development of behavioural, neurochemical and redox alterations in the male offspring of socially isolated female rats before pregnancy, reared in group (GRP) or in social isolation (ISO) from weaning until young-adulthood. To this aim, females were reared in GRP or in ISO conditions, from PND21 to PND70, when they were mated. Their male offspring was housed in GRP or ISO conditions through adolescence and until PND70, when passive avoidance-PA, novel object recognition-NOR and open field-OF tests were performed. Levels of noradrenaline (NA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), glutamate (GLU) and GABA were assessed in the prefrontal cortex (PFC). Moreover, cortical ROS levels were quantified, as well as NF-kB and the NADPH oxidase NOX2 expression, redox status (expressed as GSH:GSSG ratio) and SOD1 amount. A significant decrease of the latency time in the PA was observed in the offspring of ISO females. In the NOR test, while a significant increase in the exploratory activity towards the novel object was observed in the offspring of GRP females, no significant differences were found in the offspring of ISO females. No significant differences were found in the OF test among experimental groups. Theoffspring of ISO females showed increased NA and 5-HIAA levels, whereas in the offspring persistently housed in isolation condition from weaninguntil adulthood, we detected reduced 5-HT levels and ehnanced 5-HIAA amount. No significant changes in GLU concentrations were detected, while decreased GABA content was observed in the offspring of ISO females exposed to social isolation. Increased ROS levels as well as reduced NF-κB, NOX2 expression were detected in the offspring of ISO females. This was accompanied by reduced redox status and enhanced SOD1 levels. In conclusion, our results suggest that female exposure to chronic social stress before pregnancy might have a profound influence on the offspring neurodevelopment in terms of cognitive, neurochemical and redox-related alterations, identifying this specific time window for possible preventive and therapeutic strategies.


Assuntos
Ácido Glutâmico , Serotonina , Feminino , Masculino , Gravidez , Animais , Ratos , Ácido Hidroxi-Indolacético , Espécies Reativas de Oxigênio , Superóxido Dismutase-1 , NF-kappa B , Norepinefrina , Oxirredução , Ácido gama-Aminobutírico
4.
Biomed Pharmacother ; 168: 115780, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-39491859

RESUMO

Low consumption of n-3 polyunsaturated fatty acids (PUFA) during the developmental period has been increasingly associated with an increased risk of depressive-like symptoms in both male and female sexes. Therefore, here we performed behavioral and biochemical quantifications in adolescent rats to evaluate possible sex-driven differences in the development of anxiety-like disorders related to life-long n-3 PUFA low intake. Male and female adolescent rats fed for their entire life with n-3 PUFA poor diet showed an anxiety-like profile compared to n6/n-3 PUFA balanced diet. However, such deficiency led to reduced cortical serotonin (5-HT) in females, while increased GABA levels were retrieved in males. Conversely, in amygdala, 5-HT and noradrenaline (NA) were increased in n-3 PUFA poor treated rats. In male rats, n-3 PUFA poor diet induced significant increase in systemic kynurenine levels, while the pro-oxidant metabolite 3-Hydroxy kynurenine was higher in both sexes. In addition, considering the recent involvement of spleen-brain axis on mood disorders and neuroimmune communication, we evaluated biomarkers in the spleen. N-3 PUFA deprivation reduced NA content and increased the indoleamine 2,3-dioxygenase-1 expression in females, while acetylcholine and tumor necrosis factor alpha were higher in males. Taken together, our data indicated that deficiency of n-3 PUFA in diet induced mood disorders in adolescent animals, however this behavioral phenotype is accompanied by a different immune activation in male and female rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA