RESUMO
Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degradation, leading to pain and functional impairment. A key contributor to OA progression is the decline in cartilage lubrication. In physiological conditions, synovial fluid (SF) macromolecules like hyaluronic acid (HA), phospholipids, and lubricin play a crucial role in the boundary lubrication of articular cartilage. In early OA, cartilage damage triggers inflammation, altering SF composition and compromising the lubrication layer. This increases friction between mating interfaces, worsening cartilage degradation and local inflammation. Therefore, early-stage restoration of lubrication (by injecting in the joint different classes of compounds and formulations) could alleviate, and potentially reverse, OA progression. In the light of this, a broad variety of lubricants have been investigated for their ability to reduce friction in OA joints and promote cartilage repair in clinical and preclinical studies. This review examines recent advancements in lubricant-based therapy for OA, focusing on natural, bioinspired, and alternative products. Starting from the currently applied therapy, mainly based on natural lubricants as HA, we will present their modified versions, either in hydrogel form or with specific biomimetic moieties with the aim of reducing their clearance from the joint and of enhancing their lubricating properties. Finally, the most advanced and recent formulation, represented by alternative strategies, will be proposed. Particular emphasis will be placed on those ones involving new types of hydrogels, microparticles, nanoparticles, and liposomes, which are currently under investigation in preclinical studies. The potential application of particles and liposomes could foster the transition from natural lubricants to Drug Delivery Systems (DDSs) with lubricant features; transition which could provide more complete OA treatments, by simultaneously providing lubrication replacement and sustained release of different payloads and active agents directly at the joint level. Within each category, we will examine relevant preclinical studies, highlighting challenges and future prospects.
RESUMO
Surface tension provides microbubbles (MB) with a perfect spherical shape. Here, we demonstrate that MB can be engineered to be nonspherical, endowing them with unique features for biomedical applications. Anisotropic MB were generated via one-dimensionally stretching spherical poly(butyl cyanoacrylate) MB above their glass transition temperature. Compared to their spherical counterparts, nonspherical polymeric MB displayed superior performance in multiple ways, including i) increased margination behavior in blood vessel-like flow chambers, ii) reduced macrophage uptake in vitro, iii) prolonged circulation time in vivo, and iv) enhanced blood-brain barrier (BBB) permeation in vivo upon combination with transcranial focused ultrasound (FUS). Our studies identify shape as a design parameter in the MB landscape, and they provide a rational and robust framework for further exploring the application of anisotropic MB for ultrasound-enhanced drug delivery and imaging applications.
Assuntos
Barreira Hematoencefálica , Microbolhas , Barreira Hematoencefálica/diagnóstico por imagem , Ultrassonografia , Transporte Biológico , Sistemas de Liberação de MedicamentosRESUMO
The storied history of controlled the release systems has evolved over time; from degradable drug-loaded sutures to monolithic zero-ordered release devices and nano-sized drug delivery formulations. Scientists have tuned the physico-chemical properties of these drug carriers to optimize their performance in biomedical/pharmaceutical applications. In particular, particle drug delivery systems at the micron size regime have been used since the 1980s. Recent advances in micro and nanofabrication techniques have enabled precise control of particle size and geometry-here we review the utility of microplates and discoidal polymeric particles for a range of pharmaceutical applications. Microplates are defined as micrometer scale polymeric local depot devices in cuboid form, while discoidal polymeric nanoconstructs are disk-shaped polymeric particles having a cross-sectional diameter in the micrometer range and a thickness in the hundreds of nanometer range. These versatile particles can be used to treat several pathologies such as cancer, inflammatory diseases and vascular diseases, by leveraging their size, shape, physical properties (e.g., stiffness), and component materials, to tune their functionality. This review highlights design and fabrication strategies for these particles, discusses their applications, and elaborates on emerging trends for their use in formulations.
Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Tamanho da Partícula , Polímeros/químicaRESUMO
Surface PEGylation, biological camouflage, shape and stiffness modulation of nanoparticles as well as liver blockade and macrophage depletion have all improved the blood longevity of nanomedicines. Yet, the mononuclear phagocytic system still recognizes, sequesters, and processes the majority of blood borne particles. Here, the natural fatty acid methyl palmitate is combined with endogenous blood components - albumin - realizing â¼200 nm stable, spherical nanoparticles (MPN) capable of inducing a transient and reversible state of dormancy into macrophages. In primary bone marrow derived monocytes (BMDM), the rate of internalization of 5 different particles, ranging in size from 200 up to 2000 nm, with spherical and discoidal shapes, and made out of lipids and polymers, was almost totally inhibited after an overnight pre-treatment with 0.5 mM MPN. Microscopy analyses revealed that MPN reversibly reduced the extension and branching complexity of the microtubule network in BMDM, thus altering membrane bulging and motility. In immunocompetent mice, a 4 h pre-treatment with MPN was sufficient to redirect 2000 nm rigid particles from the liver to the lungs realizing a lung-to-liver accumulation ratio larger than 2. Also, in mice bearing U87-MG tumor masses, a 4 h pre-treatment with MPN enhanced the therapeutic efficacy of docetaxel-loaded nanoparticles significantly inhibiting tumor growth. The natural liver sequestering function was fully recovered overnight. This data would suggest that MPN pre-treatment could transiently and reversibly inhibit non-specific particle sequestration, thus redirecting nanomedicines towards their specific target tissue while boosting their anti-cancer efficacy and imaging capacity.
Assuntos
Nanomedicina , Nanopartículas , Animais , Macrófagos , Camundongos , PalmitatosRESUMO
In the tumor microenvironment, mesenchymal stromal cells (MSCs) are key modulators of cancer cell behavior in response to several stimuli. Intratumoral acidosis is a metabolic trait of fast-growing tumors that can induce a pro-tumorigenic phenotype in MSCs through the activation of the NF-κB-mediated inflammatory pathway, driving tumor clonogenicity, invasion, and chemoresistance. Recent studies have indicated that curcumin, a natural ingredient extracted from Curcuma longa, acts as an NF-κB inhibitor with anti-inflammatory properties. In this work, highly proliferating osteosarcoma cells were used to study the ability of curcumin to reduce the supportive effect of MSCs when stimulated by acidosis. Due to the poor solubility of curcumin in biological fluids, we used spherical polymeric nanoparticles as carriers (SPN-curc) to optimize its uptake by MSCs. We showed that SPN-curc inhibited the release of inflammatory cytokines (IL6 and IL8) by acidity-stimulated MSCs at a higher extent than by free curcumin. SPN-curc treatment was also successful in blocking tumor stemness, migration, and invasion that were driven by the secretome of acid-stressed MSCs. Overall, these data encourage the use of lipid-polymeric nanoparticles encapsulating NF-κB inhibitors such as curcumin to treat cancers whose progression is stimulated by an activated mesenchymal stroma.
Assuntos
Curcumina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Osteossarcoma/metabolismo , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Humanos , Proteínas I-kappa B , Células-Tronco Mesenquimais/efeitos dos fármacos , NF-kappa B/metabolismo , Osteossarcoma/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacosRESUMO
Methotrexate (MTX), a compound originally used as an anticancer drug, has also found applications in a broad variety of autoimmune disorders thanks to its anti-inflammation and immunomodulatory functions. The broad application of MTX is anyway limited by its poor solubility in biological fluids, its poor bioavailability and its toxicity. In addition, encapsulating its original form in nanoformulation is very arduous due to its considerable hydrophobicity. In this work, two strategies to efficiently encapsulate MTX into liposomal particles are proposed to overcome the limitations mentioned above and to improve MTX bioavailability. MTX solubility was increased by conjugating the molecule to two different compounds: DSPE and PEG. These two compounds commonly enrich liposome formulations, and their encapsulation efficiency is very high. By using these two prodrugs (DSPE-MTX and PEG-MTX), we were able to generate liposomes comprising one or both of them and characterized their physiochemical features and their toxicity in primary macrophages. These formulations represent an initial step to the development of targeted liposomes or particles, which can be tailored for the specific application MTX is used for (cancer, autoimmune disease or others).
RESUMO
BACKGROUND: Acute cholecystitis is an acute inflammation of the gallbladder. It represents one-third of all surgical emergency hospital admissions and has significant socioeconomic impact. Laparoscopic cholecystectomy, regardless of age, is the gold standard for this disease, but the optimal timing of surgical intervention is an open issue since the 2007 Tokyo guidelines. METHODS: We recruited from March 2015 to June 2018, in a retrospective study, 144 patients with acute cholecystitis and treated with laparoscopic cholecystectomy. The patients were divided into two groups: group A (N.=66), operated within 72 hours and group B (N.=78), between 72 hours and 1 week after the onset of symptoms. After, the two groups were further stratified by the grade of severity of acute cholecystitis in according to the Tokyo guidelines: in group A, 39 patients were grade I and 27 grade II; in group B, 48 patients were grade I and 30 grade II. RESULTS: The operative time was longer in group B patients versus group A. In group B, there was a greater difficulty in dissecting and detecting the Calot's triangle, more conversions to open, a greater mean length of hospital stay and more post-operative days. In patients with grade II, especially in the group B, were greater inflammation stage, conversions to open, difficulty in the dissection of the Calot's triangle, mean length of hospital stay and post-operative days. The operative timing within 72 hours in patients with grade I, have only advantage in the mean length of hospital stay, while in grade II, the advantages are also in the lesser difficulty in dissecting the Calot's triangle, fewer conversions and fewer post-operative days. CONCLUSIONS: Early laparoscopic cholecystectomy for acute cholecystitis should be performed considering not only the onset of symptoms, but above all the grade of severity of AC in according with TG. Grade II, particularly, must be treated within 72 hours and by experienced surgeon.
Assuntos
Colecistectomia Laparoscópica , Colecistite Aguda , Colecistectomia Laparoscópica/efeitos adversos , Colecistite Aguda/cirurgia , Humanos , Duração da Cirurgia , Estudos RetrospectivosRESUMO
Ionizable lipid nanoparticles (LNPs) are the most clinically advanced nano-delivery system for therapeutic nucleic acids. The great effort put in the development of ionizable lipids with increased in vivo potency brought LNPs from the laboratory benches to the FDA approval of patisiran in 2018 and the ongoing clinical trials for mRNA-based vaccines against SARS-CoV-2. Despite these success stories, several challenges remain in RNA delivery, including what is known as "endosomal escape." Reaching the cytosol is mandatory for unleashing the therapeutic activity of RNA molecules, as their accumulation in other intracellular compartments would simply result in efficacy loss. In LNPs, the ability of ionizable lipids to form destabilizing non-bilayer structures at acidic pH is recognized as the key for endosomal escape and RNA cytosolic delivery. This is motivating a surge in studies aiming at designing novel ionizable lipids with improved biodegradation and safety profiles. In this work, we describe the journey of RNA-loaded LNPs across multiple intracellular barriers, from the extracellular space to the cytosol. In silico molecular dynamics modeling, in vitro high-resolution microscopy analyses, and in vivo imaging data are systematically reviewed to distill out the regulating mechanisms underlying the endosomal escape of RNA. Finally, a comparison with strategies employed by enveloped viruses to deliver their genetic material into cells is also presented. The combination of a multidisciplinary analytical toolkit for endosomal escape quantification and a nature-inspired design could foster the development of future LNPs with improved cytosolic delivery of nucleic acids.
RESUMO
Macrophage inflammation and maturation into foam cells, following the engulfment of oxidized low-density lipoproteins (oxLDL), are major hallmarks in the onset and progression of atherosclerosis. Yet, chronic treatments with anti-inflammatory agents, such as methotrexate (MTX), failed to modulate disease progression, possibly for the limited drug bioavailability and plaque deposition. Here, MTX-lipid conjugates, based on 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), were integrated in the structure of spherical polymeric nanoparticles (MTX-SPNs) or intercalated in the lipid bilayer of liposomes (MTX-LIP). Although, both nanoparticles were colloidally stable with an average diameter of â¼200 nm, MTX-LIP exhibited a higher encapsulation efficiency (>70%) and slower release rate (â¼50% at 10 h) compared to MTX-SPN. In primary bone marrow derived macrophages (BMDMs), MTX-LIP modulated the transcellular transport of oxLDL more efficiently than free MTX mostly by inducing a 2-fold overexpression of ABCA1 (regulating oxLDL efflux), while the effect on CD36 and SRA-1 (regulating oxLDL influx) was minimal. Furthermore, in BMDMs, MTX-LIP showed a stronger anti-inflammatory activity than free MTX, reducing the expression of IL-1ß by 3-fold, IL-6 by 2-fold, and also moderately of TNF-α. In 28 days high-fat-diet-fed apoE-/- mice, MTX-LIP reduced the mean plaque area by 2-fold and the hematic amounts of RANTES by half as compared to free MTX. These results would suggest that the nanoenhanced delivery to vascular plaques of the anti-inflammatory DSPE-MTX conjugate could effectively modulate the disease progression by halting monocytes' maturation and recruitment already at the onset of atherosclerosis.
Assuntos
Anti-Inflamatórios/química , Metotrexato/química , Fosfatidiletanolaminas/química , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Dieta Hiperlipídica , Interleucina-1beta/metabolismo , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lipossomos/química , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanomedicina , Nanopartículas/química , Tamanho da Partícula , Células RAW 264.7RESUMO
Despite recent advances in drug delivery, the targeted treatment of unhealthy cells or tissues continues to remain a priority. In cancer (much like other pathologies), delivery vectors are designed to exploit physical and biological features of unhealthy tissues that are not always homogenous across the disease. In some cases, shifting the target from unhealthy tissues to the whole organ can represent an advantage. Specifically, the natural organ-specific retention of nanotherapeutics following intravenous administration as seen in the lung, liver, and spleen can be strategically exploited to enhance drug delivery. Herein, we outline the development of a cell-based delivery system using macrophages as a delivery vehicle. When loaded with a chemotherapeutic payload (i.e., doxorubicin), these cellular vectors (CELVEC) were shown to provide continued release within the lung. This study provides proof-of-concept evidence of an alternative class of biomimetic delivery vectors that capitalize on cell size to provide therapeutic advantages for pulmonary treatments.
Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Biomimética , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Pulmão/metabolismo , Macrófagos/química , Animais , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Lipossomos , Pulmão/citologia , Masculino , Camundongos , Camundongos Nus , Distribuição TecidualRESUMO
The vascular transport of molecules, cells, and nanoconstructs is a fundamental biophysical process impacting tissue regeneration, delivery of nutrients and therapeutic agents, and the response of the immune system to external pathogens. This process is often studied in single-channel microfluidic devices lacking the complex tridimensional organization of vascular networks. Here, soft lithography is employed to replicate the vein system of a Hedera elix leaf on a polydimethilsiloxane (PDMS) template. The replica is then sealed and connected to an external pumping system to realize an authentically complex microvascular network. This satisfies energy minimization criteria by Murray's law and comprises a network of channels ranging in size from capillaries (â¼50 µm) to large arterioles and venules (â¼400 µm). Micro-PIV (micro-particle image velocimetry) analysis is employed to characterize flow conditions in terms of streamlines, fluid velocity, and flow rates. To demonstrate the ability to reproduce physiologically relevant transport processes, two different applications are demonstrated: vascular deposition of tumor cells and lysis of blood clots. To this end, conditions are identified to culture cells within the microvasculature and realize a confluent endothelial monolayer. Then, the vascular deposition of circulating breast (MDA-MB 231) cancer cells is documented throughout the network under physiologically relevant flow conditions. Firm cell adhesion mostly occurs in channels with low mean blood velocity. As a second application, blood clots are formed within the chip by mixing whole blood with a thrombin solution. After demonstrating the blood clot stability, tissue plasminogen activator (tPA) and tPA-carrying nanoconstructs (tPA-DPNs) are employed as thrombolytics. In agreement with previous data, clot dissolution is equally induced by tPA and tPA-DPNs. The proposed leaf-inspired chip can be efficiently used to study a variety of vascular transport processes in complex microvascular networks, where geometry and flow conditions can be modulated and monitored throughout the experimental campaign.
Assuntos
Materiais Biomiméticos , Fibrinolíticos/química , Hedera/anatomia & histologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Dispositivos Lab-On-A-Chip , Folhas de Planta/anatomia & histologia , Trombose/metabolismo , Ativador de Plasminogênio Tecidual/química , Transporte Biológico , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Trombose/patologiaRESUMO
Although a plethora of nanoparticle configurations have been proposed over the past 10 years, the uniform and deep penetration of systemically injected nanomedicines into the diseased tissue stays as a major biological barrier. Here, a 'Tissue Chamber' chip is designed and fabricated to study the extravascular transport of small molecules and nanoparticles. The chamber comprises a collagen slab, deposited within a PDMS mold, and an 800 µm channel for the injection of the working solution. Through fluorescent microscopy, the dynamics of molecules and nanoparticles was estimated within the gel, under different operating conditions. Diffusion coefficients were derived from the analysis of the particle mean square displacements (MSD). For validating the experimental apparatus and the protocol for data analysis, the diffusion D of FITC-Dextran molecules of 4, 40 and 250 kDa was first quantified. As expected, D reduces with the molecular weight of the dextran molecules. The MSD-derived diffusion coefficients were in good agreement with values derived via fluorescence recovery after photobleaching (FRAP), an alternative technique that solely applies to small molecules. Then, the transport of six nanoparticles with similar hydrodynamic diameters (~ 200 nm) and different surface chemistries was quantified. Surface PEGylation was confirmed to favor the diffusion of nanoparticles within the collagen slab, whereas the surface decoration with hyaluronic acid (HA) chains reduced nanoparticle mobility in a way proportional to the HA molecular weight. To assess further the generality of the proposed approach, the diffusion of the six nanoparticles was also tested in freshly excised brain tissue slices. In these ex vivo experiments, the diffusion coefficients were 5-orders of magnitude smaller than for the Tissue Chamber chip. This was mostly ascribed to the lack of a cellular component in the chip. However, the trends documented for PEGylated and HA-coated nanoparticles in vitro were also confirmed ex vivo. This work demonstrates that the Tissue Chamber chip can be employed to effectively and efficiently test the extravascular transport of nanomedicines while minimizing the use of animals.
Assuntos
Dispositivos Lab-On-A-Chip , Nanopartículas , Animais , Encéfalo/metabolismo , Bovinos , DifusãoRESUMO
Metastases are the primary cause of death in cancer patients. Small animal models are helping in dissecting some key features in the metastatic cascade. Yet, tools for systematically analyzing the contribution of blood flow, vascular permeability, inflammation, tissue architecture, and biochemical stimuli are missing. In this work, a microfluidic chip is designed and tested to replicate in vitro key steps in the metastatic cascade. It comprises two channels, resting on the same plane, connected via an array of rounded pillars to form a permeable micromembrane. One channel acts as a vascular compartment and is coated by a fully confluent monolayer of endothelial cells, whereas the other channel is filled with a mixture of matrigel and breast cancer cells (MDA-MB-231) and reproduces the malignant tissue. The vascular permeability can be finely modulated by inducing pro-inflammatory conditions in the tissue compartment, which transiently opens up the tight junctions of endothelial cells. Permeability ranges from 1 µm/s (tight endothelium) to 5 µm/s (TNF-α at 50 ng/mL overnight) and up to â¼10 µm/s (no endothelium). Fresh medium flowing continuously in the vascular compartment is sufficient to induce cancer cell intravasation at rates of 8 cells/day with an average velocity of â¼0.5 µm/min. On the other hand, the vascular adhesion and extravasation of circulating cancer cells require TNF-α stimulation. Extravasation occurs at lower rates with 4 cells/day and an average velocity of â¼0.1 µm/min. Finally, the same chip is completely filled with matrigel and the migration of cancer cells from one channel to the other is monitored over a region of about 400 µm. Invasion rates of 12 cells/day are documented upon TNF-α stimulation. This work demonstrates that the proposed compartmentalized microfluidic chip can efficiently replicate in vitro, under controlled biophysical and biochemical conditions, the multiple key steps in the cancer metastatic cascade.
RESUMO
Atherosclerosis (AS) is a disorder of large and medium-sized arteries; it consists in the formation of lipid-rich plaques in the intima and inner media, whose pathophysiology is mostly driven by inflammation. Currently available interventions and therapies for treating atherosclerosis are not always completely effective; side effects associated with treatments, mainly caused by immunodepression for anti-inflammatory molecules, limit the systemic administration of these and other drugs. Given the high degree of freedom in the design of nanoconstructs, in the last decades researchers have put high effort in the development of nanoparticles (NPs) formulations specifically designed for either drug delivery, visualization of atherosclerotic plaques, or possibly the combination of both these and other functionalities. Here we will present the state of the art of these subjects, the knowledge of which is necessary to rationally address the use of NPs for prevention, diagnosis, and/or treatment of AS. We will analyse the work that has been done on: (a) understanding the role of the immune system and inflammation in cardiovascular diseases, (b) the pathological and biochemical principles in atherosclerotic plaque formation, (c) the latest advances in the use of NPs for the recognition and treatment of cardiovascular diseases, (d) the cellular and animal models useful to study the interactions of NPs with the immune system cells.
RESUMO
Tissue plasminogen activator (tPA) is the sole approved therapeutic molecule for the treatment of acute ischemic stroke. Yet, only a small percentage of patients could benefit from this life-saving treatment because of medical contraindications and severe side effects, including brain hemorrhage, associated with delayed administration. Here, a nano therapeutic agent is realized by directly associating the clinical formulation of tPA to the porous structure of soft discoidal polymeric nanoconstructs (tPA-DPNs). The porous matrix of DPNs protects tPA from rapid degradation, allowing tPA-DPNs to preserve over 70% of the tPA original activity after 3 h of exposure to serum proteins. Under dynamic conditions, tPA-DPNs dissolve clots more efficiently than free tPA, as demonstrated in a microfluidic chip where clots are formed mimicking in vivo conditions. At 60 min post-treatment initiation, the clot area reduces by half (57 ± 8%) with tPA-DPNs, whereas a similar result (56 ± 21%) is obtained only after 90 min for free tPA. In murine mesentery venules, the intravenous administration of 2.5 mg/kg of tPA-DPNs resolves almost 90% of the blood clots, whereas a similar dose of free tPA successfully recanalizes only about 40% of the treated vessels. At about 1/10 of the clinical dose (1.0 mg/kg), tPA-DPNs still effectively dissolve 70% of the clots, whereas free tPA works efficiently only on 16% of the vessels. In vivo, discoidal tPA-DPNs outperform the lytic activity of 200 nm spherical tPA-coated nanoconstructs in terms of both percentage of successful recanalization events and clot area reduction. The conjugation of tPA with preserved lytic activity, the deformability and blood circulating time of DPNs together with the faster blood clot dissolution would make tPA-DPNs a promising nanotool for enhancing both potency and safety of thrombolytic therapies.
Assuntos
Eritrócitos/química , Nanoestruturas/química , Polímeros/química , Trombose/tratamento farmacológico , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Relação Dose-Resposta a Droga , Eritrócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas Analíticas Microfluídicas , Nanoestruturas/administração & dosagem , Tamanho da Partícula , Polímeros/administração & dosagem , Porosidade , Propriedades de Superfície , Terapia Trombolítica , Trombose/sangue , Trombose/metabolismo , Ativador de Plasminogênio Tecidual/administração & dosagemRESUMO
A variety of microparticles have been proposed for the sustained and localized delivery of drugs with the objective of increasing therapeutic indexes by circumventing filtering organs and biological barriers. Yet, the geometrical, mechanical, and therapeutic properties of such microparticles cannot be simultaneously and independently tailored during the fabrication process to optimize their performance. In this work, a top-down approach is employed to realize micron-sized polymeric particles, called microplates (µPLs), for the sustained release of therapeutic agents. µPLs are square hydrogel particles, with an edge length of 20 µm and a height of 5 µm, made out of poly(lactic- co-glycolic acid) (PLGA). During the synthesis process, the µPL Young's modulus can be varied from 0.6 to 5 MPa by changing the PLGA amounts from 1 to 7.5 mg, without affecting the µPL geometry while matching the properties of the surrounding tissue. Within the porous µPL matrix, different classes of therapeutic payloads can be incorporated including molecular agents, such as anti-inflammatory dexamethasone (DEX), and nanoparticles containing imaging and therapeutic molecules themselves, thus originating a truly hierarchical platform. As a proof of principle, µPLs are loaded with free DEX and 200 nm spherical polymeric nanoparticles, carrying DEX molecules (DEX-SPNs). Electron and fluorescent confocal microscopy analyses document the uniform distribution and stability of molecular and nanoagents within the µPL matrix. This multiscale, hierarchical microparticle releases DEX for at least 10 days. The inclusion of DEX-SPNs serves to minimize the initial burst release and modulate the diffusion of DEX molecules out of the µPL matrix. The biopharmacological and therapeutic properties together with the fine tuning of geometry and mechanical stiffness make µPLs a unique polymeric depot for the potential treatment of cancer, cardiovascular, and chronic, inflammatory diseases.
Assuntos
Desenho de Fármacos , Dexametasona , Ácido Láctico , Nanopartículas , Ácido Poliglicólico , PorosidadeRESUMO
The effect of nanoparticle size, shape, and surface properties on cellular uptake has been extensively investigated for its basic science and translational implications. Recently, softness is emerging as a design parameter for modulating the interaction of nanoparticles with cells and the biological microenvironment. Here, circular, quadrangular, and elliptical polymeric nanoconstructs of different sizes are realized with a Young's modulus ranging from â¼100 kPa (soft) to 10 MPa (rigid). The interaction of these nanoconstructs with professional phagocytic cells is assessed via confocal microscopy and flow cytometry analyses. Regardless of the size and shape, softer nanoconstructs evade cellular uptake up to 5 times more efficiently, by bone-marrow-derived monocytes, as compared to rigid nanoconstructs. Soft circular and quadrangular nanoconstructs are equally uptaken by professional phagocytic cells (<15%); soft elliptical particles are more avidly internalized (<60%) possibly because of the larger size and elongated shape, whereas over 70% of rigid nanoconstructs of any shape and size are uptaken. Inhibition of actin polymerization via cytochalasin D reduces the internalization propensity for all nanoconstruct types. High-resolution live cell microscopy documents that soft nanoconstructs mostly establish short-lived (<30 s) interactions with macrophages, thus diminishing the likelihood of recognition and internalization. The bending stiffness is identified as a discriminating factor for internalization, whereby particles with a bending stiffness slightly higher than cells would more efficiently oppose internalization as compared to stiffer or softer particles. These results confirm that softness is a key parameter in modulating the behavior of nanoparticles and are expected to inspire the design of more efficient nanoconstructs for drug delivery, biomedical imaging, and immunomodulatory therapies.
Assuntos
Nanoestruturas/química , Fagócitos/química , Polímeros/química , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos , Camundongos , Imagem Óptica , Tamanho da Partícula , Polímeros/síntese química , Células RAW 264.7RESUMO
Inflammation is a common hallmark in several diseases, including atherosclerosis, cancer, obesity, and neurodegeneration. In Alzheimer's disease (AD), growing evidence directly correlates neuronal damage with inflammation of myeloid brain cells, such as microglia. Here, polymeric nanoparticles were engineered and characterized for the delivery of anti-inflammatory molecules to macrophages stimulated via direct incubation with amyloid-ß fibers. 200 nm spherical polymeric nanoconstructs (SPNs) and 1,000 nm discoidal polymeric nanoconstructs (DPNs) were synthesized using poly(lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and lipid chains as building blocks. First, the internalization propensity in macrophages of both nanoparticles was assessed via cytofluorimetric and confocal microscopy analyses, demonstrating that SPNs are by far more rapidly taken up as compared to DPNs (99.6 ± 0.11 vs 14.4 ± 0.06%, within 24 h). Then, Curcumin-loaded SPNs (Curc-SPNs) were realized by encapsulating Curcumin, a natural anti-inflammatory molecule, within the PLGA core of SPNs. Finally, Curc-SPNs were shown to diminish up to 6.5-fold the production of pro-inflammatory cytokines-IL-1ß; IL-6, and TNF-α-in macrophages stimulated via amyloid-ß fibers. Although more sophisticated in vitro models and systematic analyses on the blood-brain barrier permeability are critically needed, these findings hold potential in the development of nanoparticles for modulating inflammation in AD.