Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37623578

RESUMO

The pomegranate is a fruit known since ancient times for its beneficial properties. It has recently aroused great interest in the industry and among consumers, leading to a significant increase in demand. Consequently, its cultivation has been boosted all over the world. The pomegranate crop suffers considerable yield losses, especially at the postharvest stage, because it is a "minor crop" with few permitted control means. To control latent (Alternaria spp., Botrytis spp., Coniella spp., Colletotrichum spp., and Cytospora spp.) and wound (Aspergillus spp., Penicillium spp., and Talaromyces spp.) fungal pathogens, different alternative compounds, previously evaluated in vitro, were tested in the field on pomegranate cv. Wonderful. A chitosan solution, a plant protein hydrolysate, and a red seaweed extract were compared with a chemical control treatment, all as preharvest (field application) and postharvest treatments and their combinations. At the end of the storage period, the incidence of stamen infections and external and internal rots, and the severity of internal decay were evaluated. Obtained data revealed that pre- and postharvest application of all substances reduced the epiphytic population on stamens. Preharvest applications of seaweed extract and plant hydrolysate were the most effective treatments to reduce the severity of internal pomegranate decays. Furthermore, the influence of spider (Cheiracanthium mildei) cocoons on the fruit calyx as a possible barrier against postharvest fungal pathogens was assessed in a 'Mollar de Elche' pomegranate organic orchard. Compared to no-cocoon fruit (control), the incidence of infected stamens and internal molds in those with spiderwebs was reduced by about 30%, and the mean severity of internal rots was halved. Spiderwebs analyzed via Scanning Electron Microscopy (SEM) disclosed a layered, unordered structure that did not allow for the passage of fungal spores due to its mean mesh size (1 to 20 µm ca). The aims of this research were (i) to evaluate alternative compounds useful to control postharvest pomegranate decays and (ii) to evaluate the effectiveness of spiders in reducing postharvest fungal infections by analyzing related mechanisms of action. Alternative control means proposed in the present work and calyx spider colonization may be helpful to reduce postharvest pomegranate diseases, yield losses, and waste production in an integrated control strategy, satisfying organic agriculture and the planned goals of Zero Hunger Challenge launched by the United Nations.

2.
Foods ; 12(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37569247

RESUMO

In this study, the effect of hydroxypropyl methylcellulose (HPMC) and gum Arabic (GA) edible coatings amended with 0.2% geraniol (GE) were evaluated for the control of brown rot, caused by Monilinia fructicola, on artificially inoculated plums (Prunus salicina Lindl., cv. Angeleno) stored for 5 weeks at 1 °C. Brown rot is the most important pre- and postharvest fungal disease of stone fruits, causing severe economic losses worldwide. Geraniol is an important constituent of many essential oils that can be obtained as a byproduct from different industrial procedures, such as those of the juice industry. Fruit postharvest quality was also evaluated after 5 and 8 weeks of storage at 1 °C, followed by 3 days at 7 °C plus 5 days at 20 °C, simulating packinghouse, transport, and retail shelf-life conditions, respectively. HPMC coatings containing 0.2% GE reduced the incidence and severity of brown rot by 37.5 and 64.8%, respectively, compared to uncoated fruit after 5 weeks of storage at 1 °C. HPMC-coated plums, with and without GE, showed the highest level of firmness, the lowest change in external peel color parameters (L*, a*, b*, C*, hue), and the lowest flesh bleeding compared to uncoated control and GA-coated samples throughout the entire storage period, which correlated with a higher gas barrier of these coatings without negatively affecting sensory quality. Furthermore, the HPMC-0.2% GE coating provided the highest gloss to coated plums, showing the potential of this coating as a safe and environmentally friendly alternative to conventional fungicides and waxes for brown rot control and quality maintenance of cold-stored plums.

3.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240108

RESUMO

Previously, functional coatings on 3D-printed titanium implants were developed to improve their biointegration by separately incorporating Ga and Ag on the biomaterial surface. Now, a thermochemical treatment modification is proposed to study the effect of their simultaneous incorporation. Different concentrations of AgNO3 and Ga(NO3)3 are evaluated, and the obtained surfaces are completely characterized. Ion release, cytotoxicity, and bioactivity studies complement the characterization. The provided antibacterial effect of the surfaces is analyzed, and cell response is assessed by the study of SaOS-2 cell adhesion, proliferation, and differentiation. The Ti surface doping is confirmed by the formation of Ga-containing Ca titanates and nanoparticles of metallic Ag within the titanate coating. The surfaces generated with all combinations of AgNO3 and Ga(NO3)3 concentrations show bioactivity. The bacterial assay confirms a strong bactericidal impact achieved by the effect of both Ga and Ag present on the surface, especially for Pseudomonas aeruginosa, one of the main pathogens involved in orthopedic implant failures. SaOS-2 cells adhere and proliferate on the Ga/Ag-doped Ti surfaces, and the presence of gallium favors cell differentiation. The dual effect of both metallic agents doping the titanium surface provides bioactivity while protecting the biomaterial from the most frequent pathogens in implantology.


Assuntos
Gálio , Titânio , Titânio/farmacologia , Titânio/química , Prata/farmacologia , Prata/química , Osseointegração , Porosidade , Gálio/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Antibacterianos/farmacologia , Antibacterianos/química , Propriedades de Superfície
4.
BMC Plant Biol ; 22(1): 555, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456938

RESUMO

BACKGROUND: Plum (Prunus domestica L.) has a short shelf-life period due to its high respiration rate and is sensitive to low storage temperatures, which can lead to the appearance of chilling injury symptoms. In this investigation, we applied new coating treatments based on chitosan (CTS) and arginine (Arg) to plum fruit (cv. 'Stanley'). RESULTS: Fruit were treated with distilled water (control), Arg at 0.25 and 0.5 mM, CTS at 1% (w/v) or Arg-coated CTS nanoparticles (CTS-Arg NPs) at 0.5 and 1% (w/v), and then stored at 1 °C for days. The application of CTS-Arg NPs at 0.5% attenuated chilling injury, which was accompanied by accumulation of proline, reduced levels of electrolyte leakage and malondialdehyde, as well as suppressed the activity of polyphenol oxidase. Plums coated with CTS-Arg NPs (0.5%) showed higher accumulation of phenols, flavonoids and anthocyanins, due to the higher activity of phenylalanine ammonia-lyase, which in turn resulted in higher DPPH scavenging capacity. In addition, CTS-Arg NPs (0.5%) treatment delayed plum weight loss and retained fruit firmness and ascorbic acid content in comparison to control fruit. Furthermore, plums treated with CTS-Arg NPs exhibited lower H2O2 accumulation than control fruit due to higher activity of antioxidant enzymes, including CAT, POD, APX and SOD. CONCLUSIONS: The present findings show that CTS-Arg NPs (0.5%) were the most effective treatment in delaying chilling injury and prolonging the shelf life of plum fruit.


Assuntos
Quitosana , Nanopartículas , Prunus domestica , Espécies Reativas de Oxigênio , Frutas , Arginina , Antocianinas , Peróxido de Hidrogênio
5.
J Fungi (Basel) ; 8(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35628731

RESUMO

Pomegranate (Punica granatum L.) is an emerging crop in Italy and particularly in southern regions, such as Apulia, Basilicata, and Sicily, due to favorable climatic conditions. The crop is affected by several pathogenic fungi, primarily in the field, but also during postharvest phases. The most important postharvest fungal diseases in pomegranate are gray and blue molds, black heart and black spot, anthracnose, dry rot, and various soft rots. The limited number of fungicides allowed for treatment in the field and the lack of postharvest fungicides make it difficult to control latent, quiescent, and incipient fungal infections. Symptomatic pomegranates from southern Italy were sampled and isolated fungi were morphologically and molecularly characterized. The data obtained revealed that various species of Penicillium sensu lato (including Talaromyces genus), Alternaria spp., Coniella granati, and Botrytis cinerea were the principal etiological agents of postharvest pomegranate fruit diseases; other relevant pathogens, although less represented, were ascribable to Aspergillus sect. nigri, Colletotrichum acutatum sensu stricto, and Cytospora punicae. About two thirds of the isolated pathogens were responsible for latent infections. The results obtained may be useful in planning phytosanitary control strategies from the field to storage, so as to reduce yield losses.

6.
Foods ; 11(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35454670

RESUMO

Novel pectin-based, antifungal, edible coatings (ECs) were formulated by the addition of natural extracts or essential oils (EOs), and their ability to control green mold (GM), caused by Penicillium digitatum, and preserve postharvest quality of 'Valencia' oranges was evaluated. Satureja montana, Cinnamomum zeylanicum (CN), Commiphora myrrha (MY) EOs, eugenol (EU), geraniol (GE), vanillin, and propolis extract were selected as the most effective antifungal agents against P. digitatum in in vitro assays. Pectin-beeswax edible coatings amended with these antifungals were applied to artificially inoculated oranges to evaluate GM control. ECs containing GE (2 g/kg), EU (4 and 8 g/kg), and MY EO (15 g/kg) reduced disease incidence by up to 58% after 8 days of incubation at 20 °C, while CN (8 g/kg) effectively reduced disease severity. Moreover, ECs formulated with EU (8 g/kg) and GE (2 g/kg) were the most effective on artificially inoculated cold-stored oranges, with GM incidence reductions of 56 and 48% after 4 weeks at 5 °C. Furthermore, ECs containing EU and MY reduced weight loss and maintained sensory and physicochemical quality after 8 weeks at 5 °C followed by 7 days at 20 °C. Overall, ECs with EU were the most promising and could be a good natural, safe, and eco-friendly commercial treatment for preserving orange postharvest quality.

7.
Int J Biol Macromol ; 207: 965-977, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35364195

RESUMO

The use of edible coatings can lead to significant extension of the postharvest life of fresh horticultural products through the regulation of water and gaseous exchange during storage. In this regard, nano-engineered materials are of great interest to design novel and multifunctional edible coatings and are increasingly employed. Chitosan and glycine betaine have been reported to enhance fruit tolerance to chilling stress during cold storage. The current study applied new coating treatments to plum (Prunus domestica L. cv. 'Stanley') fruit at maturity stage in a completely randomized factorial design with three replicates. Plums were treated with distilled water (control), glycine betaine (GB) at 2.5 and 5 mM, chitosan (CTS) at 1% (w/v) or glycine betaine-coated chitosan nanoparticles (CTS-GB NPs) at 0.5 and 1% (w/v) and stored at 1 °C for up to 40 days. The application of CTS-GB NPs (0.5% w/v) was the most effective treatment and induced lower electrolyte leakage, MDA and H2O2 content, and significantly alleviated chilling injury. Furthermore, this treatment remarkably increased the activity of PAL enzyme, resulting in higher levels of phenolics, flavonoids and anthocyanins content, and enhanced DPPH scavenging capacity. In addition, CTS-GB NPs treatment increased endogenous GB (9.25 mg g-1 DW) and proline (1929.29 µg g-1 FW) accumulation leading to higher activity of CAT, POD, SOD and APX enzymes. Based on the obtained results, the commercial application of CTS-GB NPs could effectively reduce chilling injury, preserve nutritional quality, and prolong the storage potential and shelf life of plum fruit.


Assuntos
Quitosana , Nanopartículas , Prunus domestica , Antocianinas/farmacologia , Betaína/farmacologia , Quitosana/farmacologia , Frutas/química , Peróxido de Hidrogênio/farmacologia , Água/análise
8.
J Sci Food Agric ; 102(2): 794-800, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34223648

RESUMO

BACKGROUND: Two edible coating (EC) emulsions based on potato starch (F6 and F10) alone or formulated with sodium benzoate (SB, 2% w/w) (F6/SB and F10/SB) were evaluated to maintain postharvest quality of cold-stored 'Fino' lemons and control sour rot on lemons artificially inoculated with Geotrichum citri-aurantii. Previous research showed the potential of these ECs to improve the storability of 'Orri' mandarins and reduce citrus green and blue molds caused by Penicillum digitatum and Penicillium italicum, respectively. RESULTS: The coatings F6/SB and F10/SB significantly reduced sour rot incidence and severity compared to uncoated control samples on lemons incubated at 28 °C for 4 and 7 days. The F6/SB coating reduced weight loss and gas exchange compared to uncoated fruit after 2 and 4 weeks of storage at 12 °C plus a shelf life of 1 week at 20 °C, without adversely affecting the lemon physicochemical quality. CONCLUSION: Overall, the F6/SB coating formulation, composed of pregelatinized potato starch, glyceryl monostearate, glycerol, emulsifiers and SB, with a total solid content of 5.5%, showed the best results in reducing citrus sour rot and maintaining the postharvest quality of cold-stored 'Fino' lemons. Therefore, it showed potential as a new cost-effective postharvest treatment suitable to be included in integrated disease management programs for citrus international markets with zero tolerance to chemical residues. © 2021 Society of Chemical Industry.


Assuntos
Citrus/microbiologia , Conservação de Alimentos/métodos , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Geotrichum/efeitos dos fármacos , Doenças das Plantas/microbiologia , Amido/química , Amido/farmacologia , Citrus/química , Composição de Medicamentos , Armazenamento de Alimentos , Frutas/química , Frutas/microbiologia , Geotrichum/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Benzoato de Sódio/química , Solanum tuberosum/química
9.
Foods ; 10(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34574225

RESUMO

The sulfur-containing salts, classified as food additives, sodium metabisulfite (SMBS), potassium metabisulfite (PMBS), aluminum sulfate (AlS), and aluminum potassium sulfate (AlPS), were evaluated for their activity against Monilinia fructicola, Rhizopus stolonifer, and Geotrichum candidum, the most economically important fungal pathogens causing postharvest disease of stone fruit. In in vitro tests with potato dextrose agar (PDA) Petri dishes amended with different concentrations of the salts (0, 10, 20, 30, 50, and 100 mM), SMBS and PMBS at all concentrations, AlS above 20 mM, and AlPS above 30 mM, completely inhibited the mycelial growth of the three fungi after incubation at 25 °C for up to 10 days. In in vivo primary screenings with artificially inoculated nectarines, aqueous solutions of the four salts reduced the incidence and severity of brown rot (BR) at concentrations of 10 and 50 mM, whereas only AlS and AlPS reduced Rhizopus rot (RR), and none of the salts was effective against sour rot (SR). Solutions at 100 mM were phytotoxic and injured the fruit peel. In small-scale trials, 1 min dip treatments at 20 °C in SMBS or PMBS at 10 mM significantly reduced the incidence and severity of BR after incubation at 20 °C for up to 8 days. Conversely, dips in AlS and AlPS reduced neither BR nor RR. Results highlight the potential of SMBS and PMBS as new nonpolluting tools for the integrated control of BR, but not RR and SR, on stone fruit.

10.
Int J Food Microbiol ; 335: 108860, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947146

RESUMO

The effectiveness of the "generally recognized as safe" (GRAS) salts potassium sorbate (PS), sodium benzoate (SB), sodium ethylparaben (SEP) and sodium methylparaben (SMP) to control sour rot, caused by Geotrichum citri-aurantii, was assessed by dipping economically important citrus species and cultivars in aqueous solutions for 30, 60 or 150 s at 20 °C, followed by examination after 8 d of storage at 28 °C. Curative activity was determined because the fruit were inoculated 24 h prior to treatment. Dipping fruit for 60 s in SMP (200 mM), SEP (200 mM) or SB (3% w/v) were very effective and reduced sour rot incidence and severity by up to 90%. Their effectiveness was similar or superior to that of the conventional fungicide propiconazole (PCZ). In contrast, PS (200 mM) did not control sour rot on 'Oronules' or 'Ortanique' mandarins, but it reduced sour rot incidence on 'Barnfield' oranges by 50% compared to inoculated, water-treated control fruit. Sour rot was better controlled on oranges than on mandarins. Furthermore, heating the solutions to 50 °C enhanced their effectiveness, while post-treatment rinsing of the fruit with tap water reduced their effectiveness. Dipping 'Valencia Late' oranges in SB (3% w/v) or SMP (200 mM) for 60 s followed by long storage for up to 8 weeks at 5 °C and 90% RH, reduced sour rot incidence from 55% among water-treated control fruit to 2 to 6%, and matched the effectiveness of PCZ. No fruit in any test were visibly harmed. Both SB and SMP salts could be potential alternatives to conventional fungicides, such as PCZ or guazatine, for the integrated postharvest management of citrus sour rot.


Assuntos
Citrus/microbiologia , Frutas/microbiologia , Geotrichum/crescimento & desenvolvimento , Sais/farmacologia , Armazenamento de Alimentos , Fungicidas Industriais/farmacologia , Geotrichum/efeitos dos fármacos , Temperatura , Fatores de Tempo
11.
Int J Food Microbiol ; 330: 108713, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32512363

RESUMO

Sodium metabisulfite (SMBS), potassium metabisulfite (PMBS), aluminum sulfate (AlS) and aluminum potassium sulfate (AlPS), common sulfur-containing salts used as food additives, were evaluated for their antifungal activity against Penicillium digitatum, Penicillium italicum and Geotrichum citri-aurantii, the most economically important pathogens causing postharvest diseases of citrus fruits. In vitro radial mycelial growth was measured on potato dextrose agar (PDA) Petri dishes amended with five different concentrations of the salts (10, 20, 30, 50, 100 mM) after 7 d of incubation at 25 °C. SMBS and PMBS at all concentrations, and AIS and AIPS above 20 mM, completely inhibited the growth of these fungi. The curative antifungal activity of the four salts to control citrus green (GM) and blue (BM) molds and sour rot (SR) was evaluated on 'Valencia' oranges artificially inoculated in rind wounds with P. digitatum, P. italicum and G. citri-aurantii, respectively. In vivo primary screenings showed no significant antifungal activity of AlS and AlPS to control the three diseases at any dose tested, but SMBS and PMBS reduced the incidence and severity of GM, BM and SR at various concentrations. Effective salts and concentrations were selected for in vivo dip treatments in small-scale trials. Dips at room temperature (20 °C) in SMBS and PMBS at 20 and 50 mM for 60 or 120 s significantly reduced the incidence and severity of GM and BM, with PMBS at 50 mM for 120 s the most effective treatment. Conversely, dips in SMBS and PMBS at 50 mM for 60 or 120 s did not reduce SR incidence and severity. SMBS and PMBS treatments are potentially new tools to be included in reduced-risk non-polluting strategies to control Penicillium diseases, but not SR, on citrus fruits.


Assuntos
Antifúngicos/farmacologia , Citrus/microbiologia , Aditivos Alimentares/farmacologia , Doenças das Plantas/prevenção & controle , Enxofre/farmacologia , Aditivos Alimentares/química , Conservação de Alimentos/métodos , Frutas/microbiologia , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Temperatura , Fatores de Tempo
12.
Int J Food Microbiol ; 301: 9-18, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31055161

RESUMO

A large amount of GRAS (generally recognized as safe) salts and concentrations were evaluated in in vitro tests (inhibition of mycelial growth on PDA dishes) against Lasiodiplodia theobromae, the causal agent of citrus Diplodia stem-end rot. Ammonium carbonate (AC, 0.2%), potassium sorbate (PS, 2.0%), potassium carbonate (PC, 0.2%), sodium methylparaben (SMP, 0.1%), sodium ethylparaben (SEP, 0.1%), sodium benzoate (SB, 2.0%), and potassium silicate (PSi, 2.0%) were selected as the most effective. Disease control ability of edible composite coatings formulated with hydroxypropyl methylcellulose (HPMC), beeswax (BW), and these selected antifungal GRAS salts was assessed in in vivo experiments with 'Ortanique' mandarins and 'Barnfield' oranges artificially inoculated with L. theobromae. Coatings containing 2% PS, 0.1% SEP, or 2% SB were the most effective reducing disease severity (up to 50% reduction) and were also applied to non-inoculated and cold-stored 'Barnfield' oranges to determine their effect on postharvest fruit quality. After periods of 21 and 42 d at 5 °C followed by 7 d of shelf life at 20 °C, coatings containing SEP and SB significantly reduced weight loss and did not adversely affect the physicochemical quality attributes (firmness, soluble solid content, titratable acidity, and ethanol and acetaldehyde content) and sensory flavor with respect to uncoated control fruit. Although the internal gas concentration (CO2 level) of coated fruit increased, the coatings did not induce off-flavors.


Assuntos
Ascomicetos/efeitos dos fármacos , Citrus/microbiologia , Microbiologia de Alimentos/métodos , Conservação de Alimentos/métodos , Derivados da Hipromelose/farmacologia , Sais/farmacologia , Antifúngicos/farmacologia , Frutas/microbiologia , Lipídeos/química , Lipídeos/farmacologia
13.
J Sci Food Agric ; 97(1): 252-260, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26997097

RESUMO

BACKGROUND: The greatest hurdle to the commercial marketing of fresh-cut fruits is related to their higher susceptibility to enzymatic browning, tissue softening, and microbial growth. The aim of this study was to test the efficacy of a pectin-based edible coating and low oxygen modified atmosphere packaging (MAP) to control enzymatic browning and reduce microbial growth of fresh-cut 'Rojo Brillante' persimmon. The survival of Escherichia coli, Salmonella enteritidis and Listeria monocytogenes artificially inoculated on fresh-cut fruit was also assessed. The pectin coating was amended with 500 IU mL-1 nisin (NI) as antimicrobial agent and 10 g kg-1 citric acid and 10 g kg-1 calcium chloride as anti-browning and firming agents, respectively. Persimmon slices were dipped in the coating or in water (control) and packed under 5 kPa O2 (MAP) or in ambient atmosphere for up to 9 days at 5 °C. Microbial growth, package gas composition, colour, firmness, polyphenol oxidase activity, visual quality and overall sensory flavour of persimmon slices were measured during storage. RESULTS: Coating application combined with active MAP significantly reduced the CO2 emission and O2 consumption in the package. The coating was effective in reducing browning and also inhibited the growth of mesophilic aerobic bacteria. Coating also reduced the populations of E. coli, S. enteritidis and L. monocytogenes. CONCLUSION: The combination of the pectin-based edible coating and active MAP proved to be the most effective treatment to maintain the sensory and microbiological quality of persimmon slices for more than 9 days of storage. © 2016 Society of Chemical Industry.


Assuntos
Anti-Infecciosos , Diospyros/microbiologia , Embalagem de Alimentos/instrumentação , Embalagem de Alimentos/métodos , Frutas/microbiologia , Pectinas , Cloreto de Cálcio , Dióxido de Carbono/análise , Escherichia coli/crescimento & desenvolvimento , Conservação de Alimentos/métodos , Qualidade dos Alimentos , Humanos , Listeria monocytogenes/crescimento & desenvolvimento , Reação de Maillard , Nisina , Oxigênio/análise , Salmonella enteritidis/crescimento & desenvolvimento , Sensação , Paladar
14.
Plant Dis ; 100(2): 424-430, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30694135

RESUMO

The effect of short-term exposure to high CO2 or O2 atmospheres, alone or in combination with heat (35°C), for the control of postharvest gray mold was evaluated on 'Mollar de Elche' pomegranate fruit artificially inoculated with Botrytis cinerea and stored at 20 or 5°C. Exposure to high CO2 for 48 h at 20°C effectively reduced gray mold on pomegranate fruit incubated at 20°C for 5 days in a concentration-based manner. Furthermore, gaseous treatments with partial pressures of 95 kPa CO2 or 30 kPa O2 + 70 kPa CO2 for 48 h significantly reduced gray mold incidence and severity on fruit regardless of storage temperature. Moreover, for fruit receiving gaseous treatments at 20°C then cold stored for 12 weeks, there were no apparent negative effects of the treatments on their quality (weight loss, skin color, maturity index, pH, and sensory quality). In general, compared with those applied at 20°C, treatments at 35°C did not improve gray mold inhibition and adversely affected some quality parameters. In conclusion, 48-h exposures to specific atmospheres at 20°C may be a suitable treatment to extend pomegranate storage life and could be part of integrated control programs to control postharvest decay.

15.
Plant Signal Behav ; 10(6): e1028704, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26023857

RESUMO

Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores.


Assuntos
Citrus/anatomia & histologia , Citrus/microbiologia , Cicloexenos/metabolismo , Resistência à Doença , Regulação para Baixo , Doenças das Plantas/microbiologia , Óleos de Plantas/metabolismo , Terpenos/metabolismo , Citrus/genética , DNA de Plantas/isolamento & purificação , Resistência à Doença/genética , Limoneno , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , RNA Antissenso/metabolismo , Compostos Orgânicos Voláteis/análise
16.
Plant Dis ; 99(10): 1416-1425, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30690995

RESUMO

'Rojo Brillante' is currently the most important persimmon cultivar in Spain. The incidence and etiology of postharvest diseases affecting this cultivar were determined under local conditions. Latent and wound pathogens were assessed for two consecutive seasons on commercially grown persimmons from two orchards. Healthy persimmons were either surface-disinfested or artificially wounded on the rind and placed in humid chambers at 20 or 25°C for up to 9 weeks. Additionally, decay was assessed on commercially handled persimmons stored at 1°C for up to 20 weeks. In all cases, the most frequent disease was alternaria black spot (ABS) caused by Alternaria alternata and an ABS severity index specific for 'Rojo Brillante' persimmons was established. Other minor pathogens causing latent infections, mostly stem-end rots, included Botrytis cinerea, Lasiodiplodia theobromae, Neofusicoccum spp., Pestalotiopsis clavispora, and Colletotrichum gloeosporioides. Penicillium expansum and, to much a lesser extent, Cladosporium cladosporioides were other pathogens causing wound infections. These two fungi and A. alternata and B. cinerea were also isolated from cold-stored fruit. Common isolates were identified by macroscopic and microscopic morphology and/or DNA amplification and sequencing. Pathogenicity of selected isolates was demonstrated by fulfilling Koch's postulates. Disease development at 20 and 5°C was characterized on artificially inoculated persimmons.

17.
Int J Food Microbiol ; 179: 72-9, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24742996

RESUMO

Common food preservative agents were evaluated in in vitro tests for their antifungal activity against Monilinia fructicola, the most economically important pathogen causing postharvest disease of stone fruits. Radial mycelial growth was measured in Petri dishes of PDA amended with three different concentrations of the agents (0.01-0.2%, v/v) after 7 days of incubation at 25 °C. Thirteen out of fifteen agents tested completely inhibited the radial growth of the fungus at various concentrations. Among them, ammonium carbonate, ammonium bicarbonate and sodium bicarbonate were the most effective while sodium acetate and sodium formate were the least effective. The effective agents and concentrations were tested as ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings against brown rot disease on plums previously inoculated with M. fructicola (curative activity). 'Friar' and 'Larry Ann' plums were inoculated with the pathogen, coated with stable edible coatings about 24h later, and incubated at 20 °C and 90% RH. Disease incidence (%) and severity (lesion diameter) were determined after 4, 6, and 8 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. Coatings containing bicarbonates and parabens significantly reduced brown rot incidence in plums, but potassium sorbate, used at 1.0% in the coating formulation, was the most effective agent with a reduction rate of 28.6%. All the tested coatings reduced disease severity to some extent, but coatings containing 0.1% sodium methylparaben or sodium ethylparaben or 0.2% ammonium carbonate or ammonium bicarbonate were superior to the rest, with reduction rates of 45-50%. Overall, the results showed that most of the agents tested in this study had significant antimicrobial activity against M. fructicola and the application of selected antifungal edible coatings is a promising alternative for the control of postharvest brown rot in plums.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/normas , Prunus/microbiologia , Ascomicetos/crescimento & desenvolvimento , Carbamatos/farmacologia , Derivados da Hipromelose , Lipídeos/farmacologia , Metilcelulose/análogos & derivados , Metilcelulose/farmacologia , Parabenos/farmacologia , Ácido Sórbico/farmacologia
18.
Int J Food Microbiol ; 166(3): 391-8, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24026010

RESUMO

The antifungal activity of food additives or 'generally recognized as safe' (GRAS) compounds was tested in vitro against Botrytis cinerea and Alternaria alternata. Radial mycelial growth of each pathogen was measured in PDA Petri dishes amended with food preservatives at 0.2, 1.0, or 2.0% (v/v) after 3, 5, and 7 days of incubation at 25 °C. Selected additives and concentrations were tested as antifungal ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings. The curative activity of stable coatings was tested in in vivo experiments. Cherry tomatoes were artificially inoculated with the pathogens, coated by immersion about 24 h later, and incubated at 20 °C and 90% RH. Disease incidence and severity (lesion diameter) were determined after 6, 10, and 15 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. In general, HPMC-lipid antifungal coatings controlled black spot caused by A. alternata more effectively than gray mold caused by B. cinerea. Overall, the best results for reduction of gray mold on cherry tomato fruit were obtained with coatings containing 2.0% of potassium carbonate, ammonium phosphate, potassium bicarbonate, or ammonium carbonate, while 2.0% sodium methylparaben, sodium ethylparaben, and sodium propylparaben were the best ingredients for coatings against black rot.


Assuntos
Alternaria/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Aditivos Alimentares/farmacologia , Frutas/microbiologia , Solanum lycopersicum/microbiologia , Alternaria/crescimento & desenvolvimento , Antifúngicos/farmacologia , Botrytis/crescimento & desenvolvimento , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Tempo
19.
Plant Dis ; 96(3): 423-430, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30727139

RESUMO

Curing of citrus fruit at 30 to 37°C and 90 to 98% relative humidity for 65 to 72 h is an effective alternative to fungicides to control postharvest green and blue molds caused by Penicillium digitatum and P. italicum, respectively. However, commercial adoption is limited because treatment is long and it may harm fruit quality. In order to improve the feasibility of curing, short CO2 or O2 exposures at curing temperature were evaluated on 'Nadorcott', 'Clemenules', and 'Ortanique' mandarin fruit and 'Valencia' orange. Fruit were artificially inoculated, exposed 24 h later to air (control); CO2 at 15, 30, 50, or 95 kPa; or O2 at 30 or 45 kPa at 20 or 33°C for 8, 24, or 48 h and incubated at 20°C for 4, 7, or 15 days. Exposure at 33°C with CO2 at 15 kPa for 24 h or O2 at 30 kPa for 48 h effectively controlled both green and blue molds after 7 days of incubation at 20°C; however, control of both diseases was minimal after 15 days. To assess potential induction of disease resistance, fruit were treated as described above, then inoculated after 1, 2, or 5 days at 20°C and evaluated after 3 and 6 more days at 20°C. All of the treatments were ineffective in inducing fruit resistance. Short exposures of citrus fruit to high CO2 or O2 at curing temperatures may be part of a control program alternative to synthetic fungicides, especially for organic fruit markets.

20.
Crit Rev Food Sci Nutr ; 51(9): 872-900, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21888536

RESUMO

The use of edible films and coatings is an environmentally friendly technology that offers substantial advantages for shelf-life increase of many food products including fruits and vegetables. The development of new natural edible films and coatings with the addition of antimicrobial compounds to preserve fresh and minimally processed fruits and vegetables is a technological challenge for the industry and a very active research field worldwide. Antimicrobial agents have been successfully added to edible composite films and coatings based on polysaccharides or proteins such as starch, cellulose derivatives, chitosan, alginate, fruit puree, whey protein isolated, soy protein, egg albumen, wheat gluten, or sodium caseinate. This paper reviews the development of edible films and coatings with antimicrobial activity, typically through the incorporation of antimicrobial food additives as ingredients, the effect of these edible films on the control of target microorganisms, the influence of antimicrobial agents on mechanical and barrier properties of stand-alone edible films, and the effect of the application of antimicrobial edible coatings on the quality of fresh and fresh-cut fruits and vegetables.


Assuntos
Anti-Infecciosos/farmacologia , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Alginatos/química , Celulose/química , Quitosana/química , Manipulação de Alimentos , Embalagem de Alimentos/métodos , Frutas , Proteínas/química , Amido/química , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA