Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473885

RESUMO

Acute myocardial infarction (AMI) is a major cause of mortality and morbidity worldwide, yet biomarkers for AMI in the short- or medium-term are lacking. We apply the discordant twin pair design, reducing genetic and environmental confounding, by linking nationwide registry data on AMI diagnoses to a survey of 12,349 twins, thereby identifying 39 twin pairs (48-79 years) discordant for their first-ever AMI within three years after blood sampling. Mass spectrometry of blood plasma identified 715 proteins. Among 363 proteins with a call rate > 50%, imputation and stratified Cox regression analysis revealed seven significant proteins (FDR < 0.05): FGD6, MCAM, and PIK3CB reflected an increased level in AMI twins relative to their non-AMI co-twins (HR > 1), while LBP, IGHV3-15, C1RL, and APOC4 reflected a decreased level in AMI twins relative to their non-AMI co-twins (HR < 1). Additional 50 proteins were nominally significant (p < 0.05), and bioinformatics analyses of all 57 proteins revealed biology within hemostasis, coagulation cascades, the immune system, and the extracellular matrix. A protein-protein-interaction network revealed Fibronectin 1 as a central hub. Finally, technical validation confirmed MCAM, LBP, C1RL, and APOC3. We put forward novel biomarkers for incident AMI, a part of the proteome field where markers are surprisingly rare and where additional studies are highly needed.


Assuntos
Infarto do Miocárdio , Proteoma , Humanos , Gêmeos , Biomarcadores , Espectrometria de Massas
2.
Biomedicines ; 10(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35052841

RESUMO

The human plasma proteome mirrors the physiological state of the cardiovascular system, a fact that has been used to analyze plasma biomarkers in routine analysis for the diagnosis and monitoring of cardiovascular diseases for decades. These biomarkers address, however, only a very limited subset of cardiovascular diseases, such as acute myocardial infarct or acute deep vein thrombosis, and clinical plasma biomarkers for the diagnosis and stratification cardiovascular diseases that are growing in incidence, such as heart failure and abdominal aortic aneurysm, do not exist and are urgently needed. The discovery of novel biomarkers in plasma has been hindered by the complexity of the human plasma proteome that again transforms into an extreme analytical complexity when it comes to the discovery of novel plasma biomarkers. This complexity is, however, addressed by recent achievements in technologies for analyzing the human plasma proteome, thereby facilitating the possibility for novel biomarker discoveries. The aims of this article is to provide an overview of the recent achievements in technologies for proteomic analysis of the human plasma proteome and their applications in cardiovascular medicine.

3.
Proteomes ; 9(4)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34941812

RESUMO

Specific plasma proteins serve as valuable markers for various diseases and are in many cases routinely measured in clinical laboratories by fully automated systems. For safe diagnostics and monitoring using these markers, it is important to ensure an analytical quality in line with clinical needs. For this purpose, information on the analytical and the biological variation of the measured plasma protein, also in the context of the discovery and validation of novel, disease protein biomarkers, is important, particularly in relation to for sample size calculations in clinical studies. Nevertheless, information on the biological variation of the majority of medium-to-high abundant plasma proteins is largely absent. In this study, we hypothesized that it is possible to generate data on inter-individual biological variation in combination with analytical variation of several hundred abundant plasma proteins, by applying LC-MS/MS in combination with relative quantification using isobaric tagging (10-plex TMT-labeling) to plasma samples. Using this analytical proteomic approach, we analyzed 42 plasma samples prepared in doublets, and estimated the technical, inter-individual biological, and total variation of 265 of the most abundant proteins present in human plasma thereby creating the prerequisites for power analysis and sample size determination in future clinical proteomics studies. Our results demonstrated that only five samples per group may provide sufficient statistical power for most of the analyzed proteins if relative changes in abundances >1.5-fold are expected. Seventeen of the measured proteins are present in the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Biological Variation Database, and demonstrated remarkably similar biological CV's to the corresponding CV's listed in the EFLM database suggesting that the generated proteomic determined variation knowledge is useful for large-scale determination of plasma protein variations.

4.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008745

RESUMO

Amyloidosis is a rare disease caused by the misfolding and extracellular aggregation of proteins as insoluble fibrillary deposits localized either in specific organs or systemically throughout the body. The organ targeted and the disease progression and outcome is highly dependent on the specific fibril-forming protein, and its accurate identification is essential to the choice of treatment. Mass spectrometry-based proteomics has become the method of choice for the identification of the amyloidogenic protein. Regrettably, this identification relies on manual and subjective interpretation of mass spectrometry data by an expert, which is undesirable and may bias diagnosis. To circumvent this, we developed a statistical model-assisted method for the unbiased identification of amyloid-containing biopsies and amyloidosis subtyping. Based on data from mass spectrometric analysis of amyloid-containing biopsies and corresponding controls. A Boruta method applied on a random forest classifier was applied to proteomics data obtained from the mass spectrometric analysis of 75 laser dissected Congo Red positive amyloid-containing biopsies and 78 Congo Red negative biopsies to identify novel "amyloid signature" proteins that included clusterin, fibulin-1, vitronectin complement component C9 and also three collagen proteins, as well as the well-known amyloid signature proteins apolipoprotein E, apolipoprotein A4, and serum amyloid P. A SVM learning algorithm were trained on the mass spectrometry data from the analysis of the 75 amyloid-containing biopsies and 78 amyloid-negative control biopsies. The trained algorithm performed superior in the discrimination of amyloid-containing biopsies from controls, with an accuracy of 1.0 when applied to a blinded mass spectrometry validation data set of 103 prospectively collected amyloid-containing biopsies. Moreover, our method successfully classified amyloidosis patients according to the subtype in 102 out of 103 blinded cases. Collectively, our model-assisted approach identified novel amyloid-associated proteins and demonstrated the use of mass spectrometry-based data in clinical diagnostics of disease by the unbiased and reliable model-assisted classification of amyloid deposits and of the specific amyloid subtype.


Assuntos
Amiloidose/classificação , Amiloidose/metabolismo , Espectrometria de Massas , Modelos Biológicos , Proteômica , Amiloide/metabolismo , Humanos , Reprodutibilidade dos Testes , Máquina de Vetores de Suporte
5.
Int J Mol Sci ; 21(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824511

RESUMO

In the present study, we evaluated four small molecule affinity-based probes based on agarose-immobilized benzamidine (ABA), O-Phospho-L-Tyrosine (pTYR), 8-Amino-hexyl-cAMP (cAMP), or 8-Amino-hexyl-ATP (ATP) for their ability to remove high-abundant proteins such as serum albumin from plasma samples thereby enabling the detection of medium-to-low abundant proteins in plasma samples by mass spectrometry-based proteomics. We compared their performance with the most commonly used immunodepletion method, the Multi Affinity Removal System Human 14 (MARS14) targeting the top 14 most abundant plasma proteins and also the ProteoMiner protein equalization method by label-free quantitative liquid chromatography tandem mass spectrometry (LC-MSMS) analysis. The affinity-based probes demonstrated a high reproducibility for low-abundant plasma proteins, down to picomol per mL levels, compared to the Multi Affinity Removal System (MARS) 14 and the Proteominer methods, and also demonstrated superior removal of the majority of the high-abundant plasma proteins. The ABA-based affinity probe and the Proteominer protein equalization method performed better compared to all other methods in terms of the number of analyzed proteins. All the tested methods were highly reproducible for both high-abundant plasma proteins and low-abundant proteins as measured by correlation analyses of six replicate experiments. In conclusion, our results demonstrated that small-molecule based affinity-based probes are excellent alternatives to the commonly used immune-depletion methods for proteomic biomarker discovery studies in plasma. Data are available via ProteomeXchange with identifier PXD020727.


Assuntos
Proteínas Sanguíneas/química , Cromatografia de Afinidade/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Proteínas Sanguíneas/imunologia , Cromatografia de Afinidade/normas , Humanos , Proteoma/química , Proteoma/imunologia , Proteômica/normas , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/normas
6.
Methods Mol Biol ; 2051: 297-308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31552635

RESUMO

The data-dependent acquisition in mass spectrometry-based proteomics combined with quantitative analysis using isobaric labeling (iTRAQ and TMT) inevitably introduces missing values in proteomic experiments where a number of LC-runs are combined, especially in the growing field of shotgun clinical proteomics, where the protein profiles from the proteomics analysis of several hundred patient samples are compared and correlated to clinical traits such as a specific disease or disease treatment in order to link specific outcomes to one or more proteins. In the context of clinical research it is evident that missing values in such datasets reduce the power of the downstream statistical analysis therefore may hampers the linking of the expression of disease traits to the expression of specific proteins that may be useful for prognostic, diagnostic, or predictive purposes. In our study, we tested three data imputation approaches initially developed for microarray data for the imputation of missing values in datasets that are generated by several runs of shotgun proteomic experiments and where the data were relative protein abundances based on isobaric tags (iTRAQ and TMT). Our conclusion is that imputation methods based on k Nearest Neighbors successfully impute missing values in datasets with up to 50% missing values.


Assuntos
Biologia Computacional , Espectrometria de Massas/métodos , Proteoma , Proteômica/métodos , Algoritmos , Humanos , Software
7.
Amyloid ; 27(1): 59-66, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31752543

RESUMO

Amyloidosis is a shared name for several rare, complex and serious diseases caused by extra-cellular deposits of different misfolded proteins. Accurate characterization of the amyloid protein is essential for patient care. Immunoelectron microscopy (IEM) and laser microdissection followed by tandem mass spectrometry (LMD-MS) are new gold standards for molecular subtyping. Both methods perform superiorly to immunohistochemistry, but their complementarities, strengths and weaknesses across amyloid subtypes and organ biopsy origin remain undefined. Therefore, we performed a retrospective study of 106 Congo Red positive biopsies from different involved organs; heart, kidney, lung, gut mucosa, skin and bone marrow. IEM, performed with gold-labelled antibodies against kappa light chains, lambda light chains, transthyretin and amyloid A, identified specific staining of amyloid fibrils in 91.6%; in six biopsies amyloid fibrils were not identified, and in two, the fibril subtype could not be established. LMD-MS identified amyloid protein signature in 98.1%, but in nine the amyloid protein could not be clearly identified. MS identified protein subtype in 89.6%. Corresponding specificities ranged at organ level from 94-100%. Concordance was 89.6-100% for different amyloid subtypes. Importantly, combined use of both methods increased the diagnostic classification to 100%. Some variety in performances at organ level was observed.


Assuntos
Amiloide/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina , Placa Amiloide , Espectrometria de Massas em Tandem , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Feminino , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Masculino , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Placa Amiloide/metabolismo , Placa Amiloide/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA