Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123228, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579664

RESUMO

Despite the invaluable role of transition metals in every living organism, it should be remembered that failure to maintain the proper balance and exceed the appropriate dose may have the opposite effect. In the era of such a popular and propagated need for supplementation in the media, one should bear in mind the harmful effects that may become the result of improper and excessive intake of transition metals. This article establishes the feasibility of Raman (RS) and Fourier-transform infrared (FT-IR) spectroscopic imaging at the single-cell level to investigate the cellular response to various transition metals. These two non-destructive and perfectly complementary methods allow for in-depth monitoring of changes taking place within the cell under the influence of the agent used. HepG2 liver carcinoma cells were exposed to chromium, iron, cobalt, molybdenum, and nickel at 1 and 2 mM concentrations. Spectroscopic results were further supported by biological evaluation of selected caspases concentration. The caspase- 3, 6, 8, 9, and 12 concentrations were determined with the use of the enzyme-linked immunosorbent assay (ELISA) method. This study shows the induction of apoptosis in the intrinsic pathway by all studied transition metals. Cellular metabolism alterations are induced by mitochondrial metabolism changes and endoplasmic reticulum (ER) metabolism variations. Moreover, nickel induces not only the intrinsic pathway of apoptosis but also the extrinsic pathway of this process.


Assuntos
Carcinoma , Níquel , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Apoptose , Fígado
2.
Nanoscale ; 15(27): 11693-11706, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37387227

RESUMO

In this study for the first time, surface-enhanced Raman spectroscopy (SERS) and tip-enhanced infrared (TEIRA) nanospectrocopy together with a quartz crystal microbalance (QCM) are postulated as powerful tools for comprehensive qualitative and quantitative analyses of drug/metal nanocarrier conjugates. The development of efficient drug/carrier systems requires that the stability of the drug/carrier connection be estimated and the number of drug molecules immobilized on the carrier surface be determined. Thus, such a characterization study is highly desirable. Here, the SERS technique was applied to identify how erlotinib, a drug applied in non-small cell lung cancer (NSCLC) therapy, interacts with silver nanoparticles (AgNPs) that are considered as drug carriers. These investigations indicate that in the erlotinib/AgNP suspension, the drug strongly connects with the NPs mainly through the phenylacetylene moiety. The QCM was used to prepare an AgNP monolayer with a monitored degree of coverage and to perform controlled erlotinib adsorption as a next step. The results indicate that the drug forms a stable layer on the AgNP monolayer and also show the amount of the erlotinib molecules which underwent immobilization on the metal nanosurface. Simultaneously, it was identified how the erlotinib layer adsorbs on the AgNP monolayer using TEIRA nanospectroscopy with ultra-high spatial resolution. The obtained results show that the phenylacetylene, ethoxy, and methoxy moieties are mainly responsible for the drug/AgNP monolayer connection. Additionally, the performed studies also try to explain the surface-enhanced phenomena that occur during the TEIRA experiments and attempt to prove the statement that the "tip-enhanced" effect plays a crucial role in the detection of the thin erlotinib layer deposited on the AgNP monolayer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas Metálicas , Humanos , Técnicas de Microbalança de Cristal de Quartzo , Cloridrato de Erlotinib , Prata/química , Nanopartículas Metálicas/química , Adsorção , Análise Espectral Raman
3.
Biochim Biophys Acta Gen Subj ; 1867(9): 130395, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271406

RESUMO

Rapid and accurate diagnosis of any illness determines the success of treatment. The same applies to multiple sclerosis (MS), chronic, inflammatory, and neurodegenerative diseases (ND) of the central nervous system (CNS). Unfortunately, the definitive diagnosis of MS is prolonged and involves mainly clinical symptoms observation and magnetic resonance imaging (MRI) of the CNS. However, as we previously reported, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy shed new light on the minimally invasive, label-free, and rapid diagnosis of this illness through blood fraction. Herein we introduce Raman spectroscopy coupled with chemometric analysis to provide more detailed information about the biochemical changes behind MS. This pilot study demonstrates that mentioned combination may provide a new diagnostic biomarker and bring closer to rapid MS diagnosis. It has been shown that Raman spectroscopy provides lipid and carotenoid molecules as useful biomarkers which may be applied for both diagnosis and treatment monitoring.


Assuntos
Esclerose Múltipla , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Esclerose Múltipla/diagnóstico por imagem , Projetos Piloto , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166615, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481485

RESUMO

Despite invaluable advances in cervical cancer therapy, treatment regimens for recurrent or persistent cancers and low-toxicity alternative treatment options are scarce. In recent years, substances classified as adaptogens have been identified as promising drug sources for preventing and treating cancer-based diseases on their ability to attack multiple molecular targets. This paper establishes the effectiveness of inhibition of the neoplastic process by a withaferin A (WFA), an adaptogenic substance, based on an in vitro model of cervical cancer. This study explores for the first time the potential of high-definition vibrational spectroscopy methods, i.e. Fourier-transform infrared (FT-IR) and Raman spectroscopic (RS) imaging at the single-cell level to evaluate the efficacy of the adaptogenic drug. HeLa cervical cancer cells were incubated with various concentrations of WFA at different incubation times. The multimodal spectroscopic approach combined with partial least squares (PLS) regression allowed the identification of molecular changes (e.g., lipids, protein secondary structures, or nucleic acids) induced by WFA at the cellular level. The results clearly illustrate the enormous potential of WFA in inhibiting the proliferation of cervical cancer cells. WFA inhibited the growth of the studied cancer cell line in a dose-dependent manner. Such studies provide comprehensive information on the sensitivity of cells to adaptogenic drugs. This is a fundamental step towards determining the rate and nature of adaptogen-induced changes in cancer cells.


Assuntos
Neoplasias do Colo do Útero , Vitanolídeos , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Diagnóstico por Imagem , Vitanolídeos/farmacologia , Vitanolídeos/uso terapêutico
5.
Biochem Biophys Res Commun ; 593: 40-45, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35051781

RESUMO

Multiple sclerosis (MS) is a chronic, neurodegenerative disease of central nervous system, characterized by inflammation, demyelination, and gliosis. It is commonly known the rapid and accurate diagnosis of MS determines treatment success. The standard diagnosis contains clinical symptoms observation, magnetic resonance imaging (MRI) of central nervous system (CNS), and analysis of cerebrospinal fluid (CSF). Nonetheless, since CSF sampling is considered invasive and not all individuals are eligible for MRI we have decided to propose other diagnostic tool such as spectroscopy. Unlike lumbar puncture, blood collection is a routine procedure regarded as low-invasive; therefore, we used Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. This technique was combined with chemometrics and detailed spectral assay to analyse blood plasma and serum samples collected from MS patients and healthy individuals. The results revealed a clear identification pattern of MS, suggesting the conformation changes of amide III collagen-like proteins in plasma and the dominance of amide I ß-sheet structures. Those changes in serum spectra seem to be useful for sample differentiation.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Esclerose Múltipla/patologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Esclerose Múltipla/sangue , Esclerose Múltipla/diagnóstico por imagem , Análise de Componente Principal
6.
J Funct Biomater ; 13(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35076515

RESUMO

Bone tissue defects resulting from periodontal disease are often treated using guided tissue regeneration (GTR). The barrier membranes utilized here should prevent soft tissue infiltration into the bony defect and simultaneously support bone regeneration. In this study, we designed a degradable poly(l-lactide-co-glycolide) (PLGA) membrane that was surface-modified with cell adhesive arginine-glycine-aspartic acid (RGD) motifs. For a novel method of membrane manufacture, the RGD motifs were coupled with the non-ionic amphiphilic polymer poly(2-oxazoline) (POx). The RGD-containing membranes were then prepared by solvent casting of PLGA, POx coupled with RGD (POx_RGD), and poly(ethylene glycol) (PEG) solution in methylene chloride (DCM), followed by DCM evaporation and PEG leaching. Successful coupling of RGD to POx was confirmed spectroscopically by Raman, Fourier transform infrared in attenuated reflection mode (FTIR-ATR), and X-ray photoelectron (XPS) spectroscopy, while successful immobilization of POx_RGD on the membrane surface was confirmed by XPS and FTIR-ATR. The resulting membranes had an asymmetric microstructure, as shown by scanning electron microscopy (SEM), where the glass-cured surface was more porous and had a higher surface area then the air-cured surface. The higher porosity should support bone tissue regeneration, while the air-cured side is more suited to preventing soft tissue infiltration. The behavior of osteoblast-like cells on PLGA membranes modified with POx_RGD was compared to cell behavior on PLGA foil, non-modified PLGA membranes, or PLGA membranes modified only with POx. For this, MG-63 cells were cultured for 4, 24, and 96 h on the membranes and analyzed by metabolic activity tests, live/dead staining, and fluorescent staining of actin fibers. The results showed bone cell adhesion, proliferation, and viability to be the highest on membranes modified with POx_RGD, making them possible candidates for GTR applications in periodontology and in bone tissue engineering.

7.
Nanomedicine ; 39: 102468, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619362

RESUMO

In this study, we verified the hypothesis that Raman signature of urinary extracellular vesicles (UEVs) can be used to stratify patients with diabetes at various stages of chronic kidney disease (CKD). Patients with type 2 diabetes diagnosed with different stages of CKD and healthy subjects were enrolled in the study. UEVs were isolated using low-vacuum filtration followed by ultracentrifugation. Correlation analysis, multiple linear regression and principal component analysis were used to find differences between spectral fingerprints of UEVs derived from both groups of patients. Electron microscopy and nanoparticle tracking analysis were applied to characterize the size and morphology of UEVs. We observed significant correlations between selected Raman bands measured for UEVs and clinical parameters. We found significant differences in the area under the specific bands originating mainly from proteins and lipids between the study groups. Based on the tryptophan and amide III bands, we were able to predict the estimated glomerular filtration rate (eGFR). Principal component analysis, partial least squares regression (PLSR) and correlation analysis of the UEV Raman spectra supported the results obtained from the direct analysis of Raman spectra. Our analysis revealed that PLSR and a regression model including tryptophan and amide III bands allows to estimate the value of eGFR.


Assuntos
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Insuficiência Renal Crônica , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/metabolismo , Análise Espectral Raman , Ultracentrifugação
8.
Sci Rep ; 11(1): 18010, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504182

RESUMO

Head and neck tumors can be very challenging to treat because of the risk of problems or complications after surgery. Therefore, prompt and accurate diagnosis is extremely important to drive appropriate treatment decisions, which may reduce the chance of recurrence. This paper presents the original research exploring the feasibility of Fourier transform infrared (FT-IR) and Raman spectroscopy (RS) methods to investigate biochemical alterations upon the development of the pleomorphic adenoma. Principal component analysis (PCA) was used for a detailed assessment of the observed changes and to determine the spectroscopic basis for salivary gland neoplastic pathogenesis. It is implied that within the healthy margin, as opposed to the tumoral tissue, there are parts that differ significantly in lipid content. This observation shed new light on the crucial role of lipids in tissue physiology and tumorigenesis. Thus, a novel approach that eliminates the influence of lipids on the elucidation of biochemical changes is proposed. The performed analysis suggests that the highly heterogeneous healthy margin contains more unsaturated triacylglycerols, while the tumoral section is rich in proteins. The difference in protein content was also observed for these two tissue types, i.e. the healthy tissue possesses more proteins in the anti-parallel ß-sheet conformation, whereas the tumoral tissue is dominated by proteins rich in unordered random coils. Furthermore, the pathogenic tissue shows a higher content of carbohydrates and reveals noticeable differences in nucleic acid content. Finally, FT-IR and Raman spectroscopy methods were proposed as very promising methods in the discrimination of tumoral and healthy tissues of the salivary gland.


Assuntos
Adenoma Pleomorfo/diagnóstico , Histocitoquímica/métodos , Neoplasias das Glândulas Salivares/diagnóstico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Adenoma Pleomorfo/metabolismo , Adenoma Pleomorfo/patologia , Adenoma Pleomorfo/cirurgia , Carboidratos/química , Carcinogênese/metabolismo , Carcinogênese/patologia , Conjuntos de Dados como Assunto , Amarelo de Eosina-(YS) , Feminino , Hematoxilina , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Ácidos Nucleicos/metabolismo , Especificidade de Órgãos , Análise de Componente Principal , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Neoplasias das Glândulas Salivares/cirurgia , Triglicerídeos/metabolismo
9.
Cells ; 10(4)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924045

RESUMO

Fourier transform infrared spectroscopy (FT-IR) is widely used in the analysis of the chemical composition of biological materials and has the potential to reveal new aspects of the molecular basis of diseases, including different types of cancer. The potential of FT-IR in cancer research lies in its capability of monitoring the biochemical status of cells, which undergo malignant transformation and further examination of spectral features that differentiate normal and cancerous ones using proper mathematical approaches. Such examination can be performed with the use of chemometric tools, such as partial least squares discriminant analysis (PLS-DA) classification and partial least squares regression (PLSR), and proper application of preprocessing methods and their correct sequence is crucial for success. Here, we performed a comparison of several state-of-the-art methods commonly used in infrared biospectroscopy (denoising, baseline correction, and normalization) with the addition of methods not previously used in infrared biospectroscopy classification problems: Mie extinction extended multiplicative signal correction, Eiler's smoothing, and probabilistic quotient normalization. We compared all of these approaches and their effect on the data structure, classification, and regression capability on experimental FT-IR spectra collected from five different prostate normal and cancerous cell lines. Additionally, we tested the influence of added spectral noise. Overall, we concluded that in the case of the data analyzed here, the biggest impact on data structure and performance of PLS-DA and PLSR was caused by the baseline correction; therefore, much attention should be given, especially to this step of data preprocessing.


Assuntos
Processamento de Imagem Assistida por Computador , Próstata/citologia , Próstata/diagnóstico por imagem , Linhagem Celular , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , Masculino , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 255: 119653, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773429

RESUMO

Modern techniques of radiotherapy such as fractioned radiotherapy require applications of low doses of ionizing radiation (up to 10 Gy) for effective patient treatment. It is, therefore, crucial to understand the response mechanisms in cancer cells irradiated with low (clinical) doses. The cell's response to irradiation depends on a dose and post-irradiation time. Both factors should be considered when studying the influence of ionizing radiation on cancer cells. Thus, in the present study, PC-3 prostate cancer cells were irradiated with clinical doses of X-rays to determine dose- and time-dependent response to the irradiation. Raman spectroscopy and biological methods (MTT and comet assays) were applied for the analysis of biochemical changes in the cells induced by low doses of X-ray irradiation at 0 h and 24 h post-irradiation timepoints. Due to a limited view of the biochemical changes at the subcellular level given by single spectrum Raman measurements, Raman mapping of the whole cell area was performed. The results were compared with those obtained for cell irradiation with high doses. The analysis was based on the Partial Least Squares Regression (PLSR) method for the cytoplasmic and nuclear regions separately. Additionally, for the first time, irradiation classification was performed to confirm Raman spectroscopy as a powerful tool for studies on cancer cells treated with clinical doses of ionizing radiation.


Assuntos
Neoplasias da Próstata , Relação Dose-Resposta à Radiação , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/radioterapia , Raios X
11.
Arch Biochem Biophys ; 697: 108718, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296690

RESUMO

Nanomechanical properties of living cells, as measured with atomic force microscopy (AFM), are increasingly recognized as criteria that differentiate normal and pathologically altered cells. Locally measured cell elastic properties, described by the parameter known as Young's modulus, are currently proposed as a new diagnostic parameter that can be used at the early stage of cancer detection. In this study, local mechanical properties of normal human prostate (RWPE-1) cells and a range of malignant (22Rv1) and metastatic prostate cells (LNCaP, Du145 and PC3) were investigated. It was found that non-malignant prostate cells are stiffer than cancer cells while the metastatic cells are much softer than malignant cells from the primary tumor site. Next, the biochemical properties of the cells were measured using confocal Raman (RS) and Fourier-transform infrared (FT-IR) spectroscopies to reveal these cells' biochemical composition as malignant transformation proceeds. Nanomechanical and biochemical profiles of five different prostate cell lines were subsequently analyzed using partial least squares regression (PLSR) in order to identify which spectral features of the RS and FT-IR spectra correlate with the cell's elastic properties. The PLSR-based model could predict Young's modulus values based on both RS and FT-IR spectral information. These outcomes show not only that AFM, RS and FT-IR techniques can be used for discrimination between normal and cancer cells, but also that a linear correlation between mechanical response and biomolecular composition of the cells that undergo malignant transformation can be found. This knowledge broadens our understanding of how prostate cancer cells evolve thorough the multistep process of tumor pathogenesis.


Assuntos
Fenômenos Mecânicos , Neoplasias da Próstata/patologia , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Humanos , Masculino , Metástase Neoplásica
12.
Materials (Basel) ; 13(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050390

RESUMO

The work presents a comprehensive vibrational analysis of the process of adsorption of threonine (Thr) onto an Fe surface with deposited Cu nanoparticles (NPs) (of about 4-5 nm in size) in a corrosive environment. The application of surface-enhanced Raman spectroscopy (SERS) and surface-enhanced infrared absorption spectroscopy (SEIRA) provides the opportunity for detailed description of adsorption geometry of amino acid onto a metal surface. The combination of conventional infrared spectroscopy (IR) with atomic force microscopy (AFM) resulted in a nano-SEIRA technique which made it possible to provide a precise description of adsorbate binding to the metal surface. The studies presented confirmed that there is a very good correlation between the spectra recorded by the SERS, SEIRA, and nano-SEIRA techniques. Threonine significantly influenced the process of corrosion of the investigated surface due to the existing strong interaction between the protonated amine and carboxylate groups and the CuNPs deposited onto the Fe surface. In addition, the application of two polarization modulations (s and p) in nano-SEIRA allows subtle changes to be observed in the molecule geometry upon adsorption, with the carboxylate group of Thr being almost horizontally oriented onto the metal surface; whereas the amine group that contains nitrogen is oriented perpendicular to this surface.

13.
J Biophotonics ; 13(12): e202000252, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32844593

RESUMO

Exposure to ionizing radiation significantly affects biochemistry of cancer cells. The effect of irradiation can be divided into two stages, that is, the physicochemical stage and the biological response. Both effects induce different biochemical changes in the cells and should be analyzed as two separate phenomena. Thus, in the current study, Raman spectroscopy of prostate cancer cells fixed before (the physicochemical damage model) and just after (the biological response model) irradiation was undertaken to compare biochemical composition of irradiated cancer cells at both stages. Spectroscopic analysis of the cells was performed separately for cytoplasmic and nuclear regions. Biochemical changes of irradiated cells were analyzed using partial least squares regression (PLSR) method on the basis of the collected Raman spectra. Regression coefficients were therefore used to describe differences and similarities between biochemical composition of cancer cells undergoing the physicochemical stage and biological response. Additionally, PLSR models of both phenomena were compared for linear dose-dependence and a cross prediction.


Assuntos
Neoplasias da Próstata , Análise Espectral Raman , Núcleo Celular , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Raios X
14.
Biochim Biophys Acta Gen Subj ; 1864(10): 129677, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32634535

RESUMO

BACKGROUND: The process of malignant transformations of many tumour cases is still unclear and more specific experimental approaches are necessary. The detailed identification of the pathological changes may help in the therapy progression through the development of drugs with more selective action. METHODS: In this study, the AFM-IR nanospectroscopy was applied for the first time to the pleomorphic adenoma (TM) and the marginal tissue characterizations. In order to verify the obtained spectral information, conventional FT-IR investigations were also performed. RESULTS: The AFM-IR data (topographies, intensity maps, and spectra) show structural changes observed for the margin and TM samples. Additionally, within the tumour tissue the fibril-like areas, characteristic for amyloid diseases, were distinguished. CONCLUSIONS: The application of AFM-IR allows to determine changes in the protein secondary structures between the fibrils and the regions outside them. It has been proved that, for the former areas, the α-helix/random coil/ ß-sheet components dominate, while for the latter regions the α-helix/random coil indicate the main contribution to the protein composition. GENERAL SIGNIFICANCE: The FT-IR results remain in good agreement with the AFM-IR data recorded for the areas outside the fibrils of the TM. This observation confirms that by means of the conventional FT-IR method the identification of the considered fibrils structure would be impossible. Only application of the AFM-IR nanospectroscopy allow for characterization and visualization of the fibrillization process occurring within the investigated tumour tissue.


Assuntos
Adenoma Pleomorfo/patologia , Amiloide/análise , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares/patologia , Adulto , Feminino , Humanos , Microscopia de Força Atômica , Imagem Óptica , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Artigo em Inglês | MEDLINE | ID: mdl-32504818

RESUMO

Lipid droplets (LDs) are key organelles in cancer cells proliferation, growth, and response to stress. These nanometric structures can aggregate to reach the size of microns becoming important cell components. Although it is known that LDs contain various lipids, their chemical composition is still under investigation. Moreover, their function in cell's response to exogenous factors is also not fully understood. Raman spectroscopy, together with chemometrics, has been shown to be a powerful tool for analytical analyses of cancer cell components on the subcellular level. It provides the opportunity to analyse LDs in a label-free manner in live cells. In the current study, this method was applied to investigate LDs composition in untreated and irradiated with X-ray beams prostate cancer cells. Raman mapping technique proved lipids accumulation in PC-3 cells and allowed visualization of LDs spatial distribution in cytoplasm. A heterogeneous composition of LDs was revealed by detailed analysis of Raman spectra. Interestingly, PC-3 cells were found to accumulate either triacylglycerols or cholesteryl esters. Finally, effect of X-ray radiation on the cells was investigated using Raman spectroscopy and fluorescence staining. Significant influence of LDs in the process of cell response was confirmed and time dependence of this phenomenon was determined.


Assuntos
Gotículas Lipídicas , Neoplasias da Próstata/radioterapia , Humanos , Masculino , Células PC-3 , Análise Espectral Raman , Terapia por Raios X
16.
Sci Rep ; 10(1): 5699, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32210345

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
J Biophotonics ; 13(5): e201960094, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31999078

RESUMO

The family of vibrational spectroscopic imaging techniques grows every few years and there is a need to compare and contrast new modalities with the better understood ones, especially in the case of demanding biological samples. Three vibrational spectroscopy techniques (high definition Fourier-transform infrared [FT-IR], Raman and atomic force microscopy infrared [AFM-IR]) were applied for subcellular chemical imaging of cholesteryl esters in PC-3 prostate cancer cells. The techniques were compared and contrasted in terms of image quality, spectral pattern and chemical information. All tested techniques were found to be useful in chemical imaging of cholesterol derivatives in cancer cells. The results obtained from FT-IR and Raman imaging showed to be comparable, whereas those achieved from AFM-IR study exhibited higher spectral heterogeneity. It confirms AFM-IR method as a powerful tool in local chemical imaging of cells at the nanoscale level. Furthermore, due to polarization effect, p-polarized AFM-IR spectra showed strong enhancement of lipid bands when compared to FT-IR.


Assuntos
Neoplasias da Próstata , Análise Espectral Raman , Ésteres do Colesterol , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117737, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31757706

RESUMO

In this study, surface - enhanced Raman spectroscopy (SERS) was applied at the first time for estimation of how pH, temperature, and nanoparticle (NP) stabilizer affect an adsorption behavior of erlotinib (drug approved in a non-small cell lung cancer therapy) onto citrate-stabilized silver nanoparticles (AgNPs). Novel approach to improve cancer therapy assumes application of NPs as an efficient drug delivery system. This strategy requires designing stable drug/nanocarrier conjugates that can effectively interact in the target site. It is also important to perform deeply characterization of a drug orientation on the potential carrier surface and estimation how stable the appeared interaction is. Performed analysis, indicates that pH, temperature, presence of NP stabilizers, and time of incubation have an influence on the occurring adsorption geometry of the drug. However, the observed erlotinib/AgNP interaction remains stable regardless of the applied conditions. These considerations were supported by insightful physicochemical characteristics of the AgNPs and the erlotinib/AgNP conjugates by conducting transmission electron microscopy (TEM) imaging, determination of colloid stability conducted with the use of dynamic light scattering technique (DLS) and measurements of electrophoretic mobility. Such complex approach allows a better understanding of the stability of the erlotinib/AgNP conjugates and provides information how the investigated interaction is affected by the induced perturbations.


Assuntos
Antineoplásicos/química , Cloridrato de Erlotinib/química , Nanopartículas Metálicas/química , Prata/química , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Análise Espectral Raman , Temperatura
19.
Acta Biochim Pol ; 66(4): 383-388, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31799813

RESUMO

The proper diagnosis is a critical factor to reduce further disturbances at the early stage of the disease and plays an important role in increasing the success rate of the therapy. The traditional diagnostic tools such as biopsy or blood collection are always associated with patient's discomfort, the possibility of infections and time-consuming procedures. This article describes the non-invasive and easily accessible saliva as a source of numerous molecular biomarkers. The salivary fluid can provide information about the pathological changes not only in the oral area but also in other parts of the body, therefore salivary tests may be promising tools for risk prediction and treatment monitoring of many disorders.


Assuntos
Diagnóstico Precoce , Saliva/química , Biomarcadores/análise , Técnicas e Procedimentos Diagnósticos , Humanos
20.
Sci Data ; 6(1): 239, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664041

RESUMO

A noise-free hyperspectral FT-IR imaging dataset of a pancreatic tissue core was simulated based on experimental data that allows to test the performance of various data analysis and processing algorithms. A set of experimental noise levels was also added and used for denoising approaches comparison, which due to the noise-free reference signal enables to truly observe signal distortion caused by different approaches.


Assuntos
Pâncreas/diagnóstico por imagem , Espectroscopia de Infravermelho com Transformada de Fourier , Biópsia , Simulação por Computador , Humanos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA