Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Res (Camb) ; 13(3): tfae087, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845614

RESUMO

Zebrafish being the best animal model to study, every attempt has been made to decipher the toxic mechanism of every fungicide of usage and interest. It is important to understand the multiple targets of a toxicant to estimate the toxic potential in its totality. A total of 22 fungicides of different classes like amisulbrom, azoxystrobin, carbendazim, carboxin, chlorothalonil, difenoconazole, etridiazole, flusilazole, fluxapyroxad, hexaconazole, kresoxim methyl, mancozeb, myclobutanil, prochloraz, propiconazole, propineb, pyraclostrobin, tebuconazole, thiophanate-methyl, thiram, trifloxystrobin and ziram were reviewed and analyzed for their multiple explored targets in zebrafish. Toxic end points in zebrafish are highly informative when it comes to network analysis. They provide a window into the molecular and cellular pathways that are affected by a certain toxin. This can then be used to gain insights into the underlying mechanisms of toxicity and to draw conclusions on the potential of a particular compound to induce toxicity. This knowledge can then be used to inform decisions about drug development, environmental regulation, and other areas of research. In addition, the use of zebrafish toxic end points can also be used to better understand the effects of environmental pollutants on ecosystems. By understanding the pathways affected by a given toxin, researchers can determine how pollutants may interact with the environment and how this could lead to health or environmental impacts.

2.
3.
Toxicol Res (Camb) ; 13(1): tfae019, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380074

RESUMO

Silver nanoparticles are the extensively utilized among all nanoparticles due to their antibacterial and wound healing properties making them highly suitable for medical and pharmaceutical applications. The field of nanoparticle toxicity is an emerging field and the present study aims to assess the biochemical, hematological and genotoxicity in Oreochromis mossambicus exposed to different concentrations of silver nanoparticles for 7 and 14 days. Silver nanoparticles were synthesized by reduction of silver nitrate using trisodium citrate and was characterized using X-ray diffraction, SEM, HRTEM and DLS. Hematological parameters like RBC, WBC, Hb, HCT and MCV and for biochemical analysis, antioxidant enzymes SOD, CAT and GPX and serum enzymes AST, ALT, ACP, ALP and LDH were analyzed. Genotoxicity was studied using comet assay. Results obtained showed decrease in erythrocytes, HCT, Hb and MCV while an increase was noted in WBC on day 7 and 14. The antioxidant enzymes SOD, CAT and GPx showed a decrease and the lipid peroxidation product MDA was elevated. The serum enzymes AST, ALT, ACP ALP and LDH showed an increased activity when compared to control. DNA damage was evident by an increase in % TDNA. The results indicate hematological, biochemical and genotoxicity of silver nanoparticles that might be mediated through ROS generation in O. mossambicus.

4.
Chemosphere ; 352: 141470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367877

RESUMO

A novel fluorometric chemical sensor (PY-2TH) based on 2-thiohydantoin (2TH) in conjugation with pyrene (PY) was designed by facile one-pot Knoevenagel condensation reaction and explored for the sensitive and selective detection of Hg2+ ion in solution and solid state methods. Different analytical techniques like NMR and LC-MS concomitantly confirmed the structure of PY-2TH. Absorption and emission studies demonstrate positive solvatochromic effects indicating intramolecular charge transfer in polar solvents. PY-2TH exhibits unprecedented selectivity for detecting Hg2+ ions in tetrahydrofuran (THF) through turn-OFF fluorescence with 90% decrease in the emission intensity with a limit of detection (LOD) of ∼4.4 ppb. The mechanistic investigation through NMR and optical studies confirm the formation of a 2:1 complex between PY-2TH and Hg2+. Thin films of PY-2TH exhibits the J-aggregate formation in the solid state leading to a shift in the emission towards the near-infrared region. Further, we have demonstrated the applicability of PY-2TH for detection of Hg2+ ions and fluorescence imaging in live Zebrafish larvae and the toxicological effects are explored. Cytotoxic evaluation on Zebrafish larval cells revealed that PY-2TH is found to be non-toxic. Detailed analysis demonstrate the potential of PY-2TH for ultra-sensitive Hg2+ ion detection and removal in aqueous environments, highlighting its applicability for identification of metal contamination in live organisms and environmental toxicity.


Assuntos
Mercúrio , Peixe-Zebra , Animais , Mercúrio/análise , Metais/química , Íons/química , Pirenos/química
5.
Curr Res Microb Sci ; 6: 100216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274946

RESUMO

Antimicrobial resistance is regarded as a global threat to public health, animals, and the environment, emerging in response to extensive utilization of antimicrobials. The determinants of antimicrobial resistance are transported to susceptible bacterial populations through genetic recombination or through gene transfer, mediated by bacteriophages, plasmids, transposons, and insertion sequences. To determine the penetration of antimicrobial resistance into the bacterial population of the Thiruvandarkoil Lake, a water body located in the rural settings of Puducherry, India, culture-based microbiological and genomic approaches were used. Resistant bacterial isolates obtained from microbiological screening were subjected to whole genome sequencing and the genetic determinants of antimicrobial resistance were identified using in silico genomic tools. Cephalosporin-resistant isolates were found to produce extended spectrum beta lactamases, encoded by blaVEB-6 (in Proteus mirabilis PS01), blaSHV-12 and ompK36 mutation (in Klebsiella quasipneumoniae PS02) and blaSHV-12, blaACT-16, blaCTX-M and blaNDM-1 in (Enterobacter hormaechei PS03). Genes encoding heavy metal resistance, virulence and resistance to detergents were also detected in these resistant isolates. Among ESBL-producing organisms, one mcr-9-positive Enterobacter hormaechei was also identified in this study. To our knowledge, this is the first report of mcr-9 carrying bacterium in the environment in India. This study seeks the immediate attention of policy makers, researchers, government officials and environmental activists in India, to develop surveillance programs to monitor the dissemination of antimicrobial resistance in the environment.

6.
Chemosphere ; 349: 140867, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048833

RESUMO

This review addresses the impact of various chemical entities like pesticides, antibiotics, nanoparticles and microplastic on gut microbiota of zebrafish. Gut microbiota plays a vital role in metabolic regulation in every organism. As majority of metabolic pathways coordinated by microbiota, small alterations associated with mild to serious outcomes. Because of their unstoppable usage in day-to-day life, the present-day research on gut microbiota is mostly comprising aforementioned chemicals. It is better to understand how gut microbiome is dysbiosed by various environmental factors, to keep our microbiota safe. We tried to delineate the natural flora of zebrafish gut microbiome and the metabolic and other pathways associated and what are the common flora that was dysbiosed during the treatment. Based on the existing literature, we reviewed pesticides like Imazalil, Difenoconazole, Chlorpyrifos, Metamifop, Carbendazim, Imidacloprid, Phoxim, Niclosamide, Dieldrin, and antibiotics like Oxytetracycline, Enrofloxacin, Florfenicol, Sulfamethoxazole, Tetracycline, Streptomycin, Doxycycline, and in the category of nanoparticles, Titanium dioxide nanoparticles (nTiO2), Abalone viscera hydrolysates decorated silver nanoparticles (AVH-AgNPs), Lead-halide perovskite nanoparticles (LHP NPs), Copper nanoparticles (Cu-NPs), silver nanoparticles (Ag-NPs) and microplastic types like polyethylene and polystyrene microplastic. Other studies with miscellaneous chemical entities on zebrafish gut microbiome include Ferulic acid, Polychlorinated biphenyls, Cadmium, Disinfection by-products, Triclosan, microcystin-LR, Fluoride, and Amitriptyline.


Assuntos
Microbioma Gastrointestinal , Nanopartículas Metálicas , Praguicidas , Animais , Plásticos , Peixe-Zebra , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Praguicidas/toxicidade , Microplásticos , Antibacterianos/farmacologia , Prata
7.
Anal Chim Acta ; 1274: 341526, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37455068

RESUMO

A novel π-electron rich fluoranthene embellished with a phenyl spacer and coupled with terpyridine (TS1) was developed through Diels-Alder reaction. Single crystal X-ray structure evidences the variations in dihedral angles between the fluoranthene and the phenyl unit responsible for development of non-coplanar interactions and stabilized by a wave-like molecular packing in the crystal lattice with weak π-π interaction of 4.125 Å. The peripheral terpyridine of TS1 endows an efficient binding with multiple metal ions by colorimetric and fluorometric methods. TS1 exhibits a ratiometric fluorescence response from sky blue to yellow colour upon the addition of Zn2+ ions with a limit of detection (LOD) of 0.05 ppm. The other metal ions such as Cu2+, Co2+ and Fe2+ demonstrate fluorescence quenching behaviour with LODs of 0.1, 0.3 and 0.7 ppm, respectively. The intramolecular charge transfer (ICT) shows the variation in TS1 emission behaviour upon metal ions interaction and quantitatively discriminates the metal ion concentrations. TS1 conferred a visual colorimetric change from colourless to magenta, enabling naked-eye detection of Fe2+ and showing clear discrimination between Fe2+ and Fe3+ ions for the real-time water samples. Furthermore, we have investigated the effect of TS1 in Zebrafish larvae/embryos and cytotoxicity in human urinary tract transitional cell carcinoma cells (UM-UC-3).


Assuntos
Metais , Peixe-Zebra , Animais , Humanos , Metais/química , Fluorenos/toxicidade , Íons/química , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química
8.
Aquat Toxicol ; 180: 155-163, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27716580

RESUMO

This study outlines the toxic effects of Quinalphos (QP), an organophosphrous insecticide on the development of zebrafish (Danio rerio) embryos, with special emphasis on toxicomorphomics and toxicokinetics of target enzyme, AChE. A range of concentrations was used to elucidate the median lethal concentration (LC50) of Quinalphos. Furthermore, embryos were exposed to two sub-lethal concentrations LC10 (0.66mg/L) and LC20 (1.12mg/L) along with a median lethal concentration (3.0mg/L) for 96h. Several morphological aberrations like lordosis, kyphosis, scoliosis, heart edema, breaks in the neuronal tube and underdeveloped facial parts were noticed, which were of concentration and time dependent. The QP has adequately hindered hatching process during the course of exposure which was upheld by the in silico docking studies with hatching enzyme, ZHE1. The length of hatchlings at 96h in LC50 concentration was significantly reduced to 47% compared to control. A significant pericardial effusion (5 to 16 fold) was observed in >90% of LC50 treated groups. Morphological changes in heart lead to the bradycardia, which ultimately leading to heart failure in some cases. The swimming behavior was significantly diminished in relation to the inhibition of AChE levels. From the in vitro kinetic studies, the kinetic constants Km, Vmax and inhibitory concentration Ki (4.45×10-5M) was determined which supported the competitive nature of QP.


Assuntos
Inseticidas/toxicidade , Metaloproteases/metabolismo , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Sítios de Ligação , Dano ao DNA/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Coração/anatomia & histologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Inseticidas/metabolismo , Cinética , Dose Letal Mediana , Metaloproteases/química , Simulação de Acoplamento Molecular , Compostos Organotiofosforados/metabolismo , Compostos Organotiofosforados/toxicidade , Ligação Proteica , Estrutura Terciária de Proteína , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/química
9.
Environ Toxicol Pharmacol ; 45: 123-31, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27295611

RESUMO

The current study was aimed to investigate the oxidative stress response in zebrafish embryos exposed to sub-lethal (LC10) and lethal (LC50) concentrations of profenofos for 96-h and in silico modelling of zebrafish hatching enzyme, ZHE1 to explain the delayed hatching. Embryos exposed to profenofos under semi-static conditions significantly diminished glutathione (GSH), superoxide dismutase (SOD) and glutathione reductase (GR) levels, but increased the activities of catalase (CAT) and glutathione S-transferase (GST) concomitantly with marked elevation in malondialdehyde (MDA) content in whole-body homogenate of the treated groups compared with control. In addition, stress protein Hsp70 expression and DNA damage were significantly increased in a concentration- dependent manner compared with controls. From the computational docking studies of ZHE1 with profenofos revealed that profenofos is binding to three amino acids, histidine 99, histidine 109 and arginine 182 at the active site of the enzyme through hydrogen bonding which may lead to inhibition of hatching.


Assuntos
Inseticidas/toxicidade , Metaloproteases/metabolismo , Modelos Moleculares , Organotiofosfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra/metabolismo , Animais , Sítios de Ligação , Catalase/metabolismo , Simulação por Computador , Dano ao DNA , Feminino , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico HSP70 , Masculino , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia
10.
Environ Toxicol Pharmacol ; 39(2): 887-97, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25796049

RESUMO

The aim of the present study was to evaluate the developmental toxicity of profenofos to early developing Zebrafish (Danio rerio) embryos (4h post fertilization) in a static system at 1.0 to 2.25mg/L. Median lethal concentrations (LC50) of profenofos at 24-h, 48-h, 72-h and 96-h were determined as 2.04, 1.58, 1.57 and 1.56 mg/L, respectively. The hatching of embryos were recorded at every 12h interval and the median hatching time (HT50) was also calculated for each concentration. In a separate set of experiments, 96-h LC10 (0.74 mg/L) and LC50 (1.56 mg/L) concentrations were used to assess the developmental toxicity in relation to behavior, morphology, and interactions with the targeted enzyme acetylcholinesterase. Live video-microscopy revealed that the profenofos exposed embryos exhibited an abnormal development, skeletal defects and altered heart morphology in a concentration-dependent manner, which leads to alterations in the swimming behavior of hatchlings at 144-h, which indicate that developing zebrafish are sensitive to profenofos.


Assuntos
Inibidores da Colinesterase/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Inseticidas/toxicidade , Organotiofosfatos/toxicidade , Peixe-Zebra/embriologia , Acetilcolinesterase/metabolismo , Tecido Adiposo/anormalidades , Animais , Comportamento Animal/efeitos dos fármacos , Embrião não Mamífero/anormalidades , Embrião não Mamífero/enzimologia , Cabeça/anormalidades , Cardiopatias Congênitas/induzido quimicamente , Atividade Motora/efeitos dos fármacos , Cauda/anormalidades , Saco Vitelino/anormalidades , Peixe-Zebra/anormalidades , Peixe-Zebra/metabolismo
11.
Environ Sci Pollut Res Int ; 22(10): 7744-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25604565

RESUMO

The present study examined the response of zebrafish embryos exposed to different concentrations (10, 20, 30, 40, 50, and 60 mg/L) of monocrotophos under static conditions for 96 h. We found that mortality had occurred within 48 h at all test concentrations, later insignificant mortality was observed. Monocrotophos (MCP) can be rated as moderately toxic to the Zebrafish embryos with a 96-h median lethal concentration (LC50) of 37.44 ± 3.32 mg/L. In contrast, it greatly affected the development of zebrafish embryos by inducing several developmental abnormalities like pericardial edema, altered heart development, spinal and vertebral anomalies in a concentration-dependent manner. A significant percent reduction in length by 9-48% and heart beats by 18-51% was observed in hatchlings exposed to LC10 and LC50 concentrations at 96 h when compared to controls. The process of looping formation of heart at embryonic stage was greatly affected by the LC50 concentration of MCP. The neurotoxic potentiality of MCP was assessed by using a marker enzyme, acetylcholinesterase in both in vitro and in vivo experiments. MCP was found to be the most potent inhibitor of AChE in vitro with an IC50 value of 4.3 × 10(-4) M. The whole-body AChE enzyme activity in vivo was significantly inhibited during the exposure tenure with the maximum inhibition of 62% at 24 h.


Assuntos
Monocrotofós/toxicidade , Praguicidas/toxicidade , Peixe-Zebra/embriologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA