Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Structure ; 31(6): 724-734.e3, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37059095

RESUMO

To perform their physiological functions, amino methyl propionic acid receptors (AMPARs) cycle through active, resting, and desensitized states, and dysfunction in AMPAR activity is associated with various neurological disorders. Transitions among AMPAR functional states, however, are largely uncharacterized at atomic resolution and are difficult to examine experimentally. Here, we report long-timescale molecular dynamics simulations of dimerized AMPAR ligand-binding domains (LBDs), whose conformational changes are tightly coupled to changes in AMPAR functional states, in which we observed LBD dimer activation and deactivation upon ligand binding and unbinding at atomic resolution. Importantly, we observed the ligand-bound LBD dimer transition from the active conformation to several other conformations, which may correspond with distinct desensitized conformations. We also identified a linker region whose structural rearrangements heavily affected the transitions to and among these putative desensitized conformations, and confirmed, using electrophysiology experiments, the importance of the linker region in these functional transitions.


Assuntos
Simulação de Dinâmica Molecular , Receptores de AMPA , Receptores de AMPA/química , Ligantes , Domínios Proteicos , Dimerização
2.
J Am Chem Soc ; 144(6): 2501-2510, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35130691

RESUMO

Intrinsically disordered proteins (IDPs) are implicated in many human diseases. They have generally not been amenable to conventional structure-based drug design, however, because their intrinsic conformational variability has precluded an atomic-level understanding of their binding to small molecules. Here we present long-time-scale, atomic-level molecular dynamics (MD) simulations of monomeric α-synuclein (an IDP whose aggregation is associated with Parkinson's disease) binding the small-molecule drug fasudil in which the observed protein-ligand interactions were found to be in good agreement with previously reported NMR chemical shift data. In our simulations, fasudil, when bound, favored certain charge-charge and π-stacking interactions near the C terminus of α-synuclein but tended not to form these interactions simultaneously, rather breaking one of these interactions and forming another nearby (a mechanism we term dynamic shuttling). Further simulations with small molecules chosen to modify these interactions yielded binding affinities and key structural features of binding consistent with subsequent NMR experiments, suggesting the potential for MD-based strategies to facilitate the rational design of small molecules that bind with disordered proteins.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Proteínas Intrinsicamente Desordenadas/metabolismo , alfa-Sinucleína/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/química , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/metabolismo , Sequência de Aminoácidos , Ligação de Hidrogênio , Proteínas Intrinsicamente Desordenadas/química , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(19): 9390-9399, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019091

RESUMO

Bruton's tyrosine kinase (Btk) is critical for B cell proliferation and activation, and the development of Btk inhibitors is a vigorously pursued strategy for the treatment of various B cell malignancies. A detailed mechanistic understanding of Btk activation has, however, been lacking. Here, inspired by a previous suggestion that Btk activation might depend on dimerization of its lipid-binding PH-TH module on the cell membrane, we performed long-timescale molecular dynamics simulations of membrane-bound PH-TH modules and observed that they dimerized into a single predominant conformation. We found that the phospholipid PIP3 stabilized the dimer allosterically by binding at multiple sites, and that the effects of PH-TH mutations on dimer stability were consistent with their known effects on Btk activity. Taken together, our simulation results strongly suggest that PIP3-mediated dimerization of Btk at the cell membrane is a critical step in Btk activation.


Assuntos
Tirosina Quinase da Agamaglobulinemia/química , Tirosina Quinase da Agamaglobulinemia/metabolismo , Membrana Celular/enzimologia , Tirosina Quinase da Agamaglobulinemia/genética , Sítios de Ligação , Membrana Celular/química , Membrana Celular/genética , Dimerização , Ativação Enzimática , Humanos , Simulação de Dinâmica Molecular , Mutação , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosforilação
4.
Proc Natl Acad Sci U S A ; 116(10): 4244-4249, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760596

RESUMO

Despite the biological importance of protein-protein complexes, determining their structures and association mechanisms remains an outstanding challenge. Here, we report the results of atomic-level simulations in which we observed five protein-protein pairs repeatedly associate to, and dissociate from, their experimentally determined native complexes using a molecular dynamics (MD)-based sampling approach that does not make use of any prior structural information about the complexes. To study association mechanisms, we performed additional, conventional MD simulations, in which we observed numerous spontaneous association events. A shared feature of native association for these five structurally and functionally diverse protein systems was that if the proteins made contact far from the native interface, the native state was reached by dissociation and eventual reassociation near the native interface, rather than by extensive interfacial exploration while the proteins remained in contact. At the transition state (the conformational ensemble from which association to the native complex and dissociation are equally likely), the protein-protein interfaces were still highly hydrated, and no more than 20% of native contacts had formed.


Assuntos
Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Ligação Proteica , Conformação Proteica , Termodinâmica
5.
Biochemistry ; 57(39): 5748-5758, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30102523

RESUMO

The pathways that G protein-coupled receptor (GPCR) ligands follow as they bind to or dissociate from their receptors are largely unknown. Protease-activated receptor-1 (PAR1) is a GPCR activated by intramolecular binding of a tethered agonist peptide that is exposed by thrombin cleavage. By contrast, the PAR1 antagonist vorapaxar is a lipophilic drug that binds in a pocket almost entirely occluded from the extracellular solvent. The binding and dissociation pathway of vorapaxar is unknown. Starting with the crystal structure of vorapaxar bound to PAR1, we performed temperature-accelerated molecular dynamics simulations of ligand dissociation. In the majority of simulations, vorapaxar exited the receptor laterally into the lipid bilayer through openings in the transmembrane helix (TM) bundle. Prior to full dissociation, vorapaxar paused in metastable intermediates stabilized by interactions with the receptor and lipid headgroups. Derivatives of vorapaxar with alkyl chains predicted to extend between TM6 and TM7 into the lipid bilayer inhibited PAR1 with apparent on rates similar to that of the parent compound in cell signaling assays. These data are consistent with vorapaxar binding to PAR1 via a pathway that passes between TM6 and TM7 from the lipid bilayer, in agreement with the most consistent pathway observed by molecular dynamics. While there is some evidence of entry of the ligand into rhodopsin and lipid-activated GPCRs from the cell membrane, our study provides the first such evidence for a peptide-activated GPCR and suggests that metastable intermediates along drug binding and dissociation pathways can be stabilized by specific interactions between lipids and the ligand.


Assuntos
Lactonas/metabolismo , Bicamadas Lipídicas/metabolismo , Piridinas/metabolismo , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/metabolismo , Animais , Sítios de Ligação , Fibroblastos , Humanos , Lactonas/química , Ligantes , Simulação de Dinâmica Molecular , Estrutura Molecular , Fosfatidilcolinas/metabolismo , Ligação Proteica , Conformação Proteica , Piridinas/química , Ratos , Receptor PAR-1/química
6.
Proc Natl Acad Sci U S A ; 114(33): 8770-8775, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760994

RESUMO

Fibrils and oligomers are the aggregated protein agents of neuronal dysfunction in ALS diseases. Whereas we now know much about fibril architecture, atomic structures of disease-related oligomers have eluded determination. Here, we determine the corkscrew-like structure of a cytotoxic segment of superoxide dismutase 1 (SOD1) in its oligomeric state. Mutations that prevent formation of this structure eliminate cytotoxicity of the segment in isolation as well as cytotoxicity of the ALS-linked mutants of SOD1 in primary motor neurons and in a Danio rerio (zebrafish) model of ALS. Cytotoxicity assays suggest that toxicity is a property of soluble oligomers, and not large insoluble aggregates. Our work adds to evidence that the toxic oligomeric entities in protein aggregation diseases contain antiparallel, out-of-register ß-sheet structures and identifies a target for structure-based therapeutics in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Cristalografia por Raios X/métodos , Camundongos , Neurônios Motores/metabolismo , Mutação/genética , Conformação Proteica em Folha beta , Superóxido Dismutase-1/genética
7.
J Chem Theory Comput ; 13(7): 3372-3377, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28582625

RESUMO

A quantitative characterization of the binding properties of drug fragments to a target protein is an important component of a fragment-based drug discovery program. Fragments typically have a weak binding affinity, however, making it challenging to experimentally characterize key binding properties, including binding sites, poses, and affinities. Direct simulation of the binding equilibrium by molecular dynamics (MD) simulations can provide a computational route to characterize fragment binding, but this approach is so computationally intensive that it has thus far remained relatively unexplored. Here, we perform MD simulations of sufficient length to observe several different fragments spontaneously and repeatedly bind to and unbind from the protein FKBP, allowing the binding affinities, on- and off-rates, and relative occupancies of alternative binding sites and alternative poses within each binding site to be estimated, thereby illustrating the potential of long time scale MD as a quantitative tool for fragment-based drug discovery. The data from the long time scale fragment binding simulations reported here also provide a useful benchmark for testing alternative computational methods aimed at characterizing fragment binding properties. As an example, we calculated binding affinities for the same fragments using a standard free energy perturbation approach and found that the values agreed with those obtained from the fragment binding simulations within statistical error.


Assuntos
Simulação de Dinâmica Molecular , Preparações Farmacêuticas/química , Sítios de Ligação , Cristalografia por Raios X , Preparações Farmacêuticas/metabolismo , Ligação Proteica , Sirolimo/química , Sirolimo/metabolismo , Tacrolimo/química , Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo , Termodinâmica
8.
Mol Pharmacol ; 89(5): 485-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26873858

RESUMO

How drugs dissociate from their targets is largely unknown. We investigated the molecular basis of this process in the adenosine A2Areceptor (A2AR), a prototypical G protein-coupled receptor (GPCR). Through kinetic radioligand binding experiments, we characterized mutant receptors selected based on molecular dynamic simulations of the antagonist ZM241385 dissociating from the A2AR. We discovered mutations that dramatically altered the ligand's dissociation rate despite only marginally influencing its binding affinity, demonstrating that even receptor features with little contribution to affinity may prove critical to the dissociation process. Our results also suggest that ZM241385 follows a multistep dissociation pathway, consecutively interacting with distinct receptor regions, a mechanism that may also be common to many other GPCRs.


Assuntos
Antagonistas do Receptor A2 de Adenosina/metabolismo , Modelos Moleculares , Receptor A2A de Adenosina/metabolismo , Triazinas/metabolismo , Triazóis/metabolismo , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Substituição de Aminoácidos , Sítios de Ligação , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Bases de Dados de Proteínas , Células HEK293 , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Mutação , Ensaio Radioligante , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade , Triazinas/química , Triazinas/farmacologia , Triazóis/química , Triazóis/farmacologia
9.
J Chem Theory Comput ; 12(3): 1360-7, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26866996

RESUMO

Molecular dynamics (MD) simulations can describe protein motions in atomic detail, but transitions between protein conformational states sometimes take place on time scales that are infeasible or very expensive to reach by direct simulation. Enhanced sampling methods, the aim of which is to increase the sampling efficiency of MD simulations, have thus been extensively employed. The effectiveness of such methods when applied to complex biological systems like proteins, however, has been difficult to establish because even enhanced sampling simulations of such systems do not typically reach time scales at which convergence is extensive enough to reliably quantify sampling efficiency. Here, we obtain sufficiently converged simulations of three proteins to evaluate the performance of simulated tempering, a member of a widely used class of enhanced sampling methods that use elevated temperature to accelerate sampling. Simulated tempering simulations with individual lengths of up to 100 µs were compared to (previously published) conventional MD simulations with individual lengths of up to 1 ms. With two proteins, BPTI and ubiquitin, we evaluated the efficiency of sampling of conformational states near the native state, and for the third, the villin headpiece, we examined the rate of folding and unfolding. Our comparisons demonstrate that simulated tempering can consistently achieve a substantial sampling speedup of an order of magnitude or more relative to conventional MD.


Assuntos
Aprotinina/química , Proteínas dos Microfilamentos/química , Simulação de Dinâmica Molecular , Ubiquitina/química , Dobramento de Proteína
10.
J Chem Theory Comput ; 10(7): 2860-5, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26586510

RESUMO

Structurally elucidating transition pathways between protein conformations gives deep mechanistic insight into protein behavior but is typically difficult. Unbiased molecular dynamics (MD) simulations provide one solution, but their computational expense is often prohibitive, motivating the development of enhanced sampling methods that accelerate conformational changes in a given direction, embodied in a collective variable. The accuracy of such methods is unclear for complex protein transitions, because obtaining unbiased MD data for comparison is difficult. Here, we use long-time scale, unbiased MD simulations of epidermal growth factor receptor kinase deactivation as a complex biological test case for two widely used methods-steered molecular dynamics (SMD) and the string method. We found that common collective variable choices, based on the root-mean-square deviation (RMSD) of the entire protein, prevented the methods from producing accurate paths, even in SMD simulations on the time scale of the unbiased transition. Using collective variables based on the RMSD of the region of the protein known to be important for the conformational change, however, enabled both methods to provide a more accurate description of the pathway in a fraction of the simulation time required to observe the unbiased transition.

11.
Nature ; 503(7475): 295-9, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24121438

RESUMO

The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15 Å from the classical, 'orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.


Assuntos
Desenho de Fármacos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Regulação Alostérica/fisiologia , Animais , Sítios de Ligação , Células CHO , Cricetulus , Humanos , Modelos Químicos , Conformação Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Receptores Acoplados a Proteínas G/genética , Reprodutibilidade dos Testes
12.
Nature ; 501(7465): 121-4, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23892782

RESUMO

Application of a specific stimulus opens the intracellular gate of a K(+) channel (activation), yielding a transient period of ion conduction until the selectivity filter spontaneously undergoes a conformational change towards a non-conductive state (inactivation). Removal of the stimulus closes the gate and allows the selectivity filter to interconvert back to its conductive conformation (recovery). Given that the structural differences between the conductive and inactivated filter are very small, it is unclear why the recovery process can take up to several seconds. The bacterial K(+) channel KcsA from Streptomyces lividans can be used to help elucidate questions about channel inactivation and recovery at the atomic level. Although KcsA contains only a pore domain, without voltage-sensing machinery, it has the structural elements necessary for ion conduction, activation and inactivation. Here we reveal, by means of a series of long molecular dynamics simulations, how the selectivity filter is sterically locked in the inactive conformation by buried water molecules bound behind the selectivity filter. Potential of mean force calculations show how the recovery process is affected by the buried water molecules and the rebinding of an external K(+) ion. A kinetic model deduced from the simulations shows how releasing the buried water molecules can stretch the timescale of recovery to seconds. This leads to the prediction that reducing the occupancy of the buried water molecules by imposing a high osmotic stress should accelerate the rate of recovery, which was verified experimentally by measuring the recovery rate in the presence of a 2-molar sucrose concentration.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Simulação de Dinâmica Molecular , Canais de Potássio/química , Canais de Potássio/metabolismo , Água/farmacologia , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Cinética , Potássio/metabolismo , Conformação Proteica , Streptomyces lividans/química , Sacarose/farmacologia , Termodinâmica , Água/química , Água/metabolismo
13.
J Phys Chem B ; 117(42): 12898-907, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23841719

RESUMO

Understanding the nature of the glass transition--the dramatic slowing of dynamics and eventual emergence of a disordered solid from a cooling liquid--is a fundamental challenge in physical science. A central characteristic of glass-forming liquids is a non-exponential main relaxation process. The extent of deviation from exponential relaxation typically becomes more pronounced on cooling. Theories that predict a growth of spatially heterogeneous dynamics as temperature is lowered can explain these observations. In apparent contradiction to these theories, however, some experiments suggest that certain substances--notably including the intensely studied molecular glass-former ortho-terphenyl (OTP)--have a main relaxation process whose shape is essentially temperature independent, even though other observables predicted to be correlated with the degree of dynamical heterogeneity are temperature dependent. Here we report the first simulations based on an atomistic model of OTP that reach equilibrium at temperatures well into the supercooled regime. We first show that the results of these simulations are in reasonable quantitative agreement with experimental data for several basic properties over a wide range of temperatures. We then focus on rotational relaxation, finding nearly exponential behavior at high temperatures with clearly increasing deviations as temperature is lowered. The much weaker temperature dependence observed in light-scattering experiments also emerges from the same simulation data when we calculate correlation functions similar to those probed experimentally; this highlights the diversity of temperature dependencies that can be obtained with different probes. Further analysis suggests that the temperature insensitivity observed in the light-scattering experiments stems from the dependence of these measurements on internal as well as rotational molecular motion. Within the temperature range of our OTP simulations, our results strongly suggest that this archetypal glass-former behaves as anticipated by theories of the glass transition that predict increasing non-exponentiality with cooling, and our simulations thus strengthen the evidence supporting such theories.


Assuntos
Compostos de Terfenil/química , Simulação de Dinâmica Molecular , Rotação , Temperatura , Termodinâmica
14.
Proc Natl Acad Sci U S A ; 110(18): 7270-5, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23576739

RESUMO

The epidermal growth factor receptor (EGFR) is a key protein in cellular signaling, and its kinase domain (EGFR kinase) is an intensely pursued target of small-molecule drugs. Although both catalytically active and inactive conformations of EGFR kinase have been resolved crystallographically, experimental characterization of the transitions between these conformations remains difficult. Using unbiased, all-atom molecular dynamics simulations, we observed EGFR kinase spontaneously transition from the active to the so-called "Src-like inactive" conformation by way of two sets of intermediate conformations: One corresponds to a previously identified locally disordered state and the other to previously undescribed "extended" conformations, marked by the opening of the ATP-binding site between the two lobes of the kinase domain. We also simulated the protonation-dependent transition of EGFR kinase to another ["Asp-Phe-Gly-out" ("DFG-out")] inactive conformation and observed similar intermediate conformations. A key element observed in the simulated transitions is local unfolding, or "cracking," which supports a prediction of energy landscape theory. We used hydrogen-deuterium (H/D) exchange measurements to corroborate our simulations and found that the simulated intermediate conformations correlate better with the H/D exchange data than existing active or inactive EGFR kinase crystal structures. The intermediate conformations revealed by our simulations of the transition process differ significantly from the existing crystal structures and may provide unique possibilities for structure-based drug discovery.


Assuntos
Biocatálise , Receptores ErbB/química , Motivos de Aminoácidos , Cristalografia por Raios X , Medição da Troca de Deutério , Ativação Enzimática , Receptores ErbB/metabolismo , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Quinases da Família src/química , Quinases da Família src/metabolismo
15.
Drug Discov Today ; 18(13-14): 667-73, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23454741

RESUMO

It is increasingly appreciated that the rates at which drugs associate with and dissociate from receptors--the binding kinetics--directly impact drug efficacy and safety. The molecular determinants of drug-receptor binding kinetics remain poorly understood, however, especially when compared with the well-known factors that affect binding affinity. The rational modulation of kinetics during lead optimization thus remains challenging. We review some of the key factors thought to control drug-receptor binding kinetics at the molecular level--molecular size, conformational fluctuations, electrostatic interactions and hydrophobic effects--and discuss several possible approaches for the rational design of drugs with desired binding kinetics.


Assuntos
Desenho de Fármacos , Preparações Farmacêuticas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Sítios de Ligação , Humanos , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Preparações Farmacêuticas/química , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/química , Receptores Citoplasmáticos e Nucleares/química , Relação Estrutura-Atividade
16.
Cell ; 152(3): 532-42, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374348

RESUMO

G-protein-coupled receptors (GPCRs) can modulate diverse signaling pathways, often in a ligand-specific manner. The full range of functionally relevant GPCR conformations is poorly understood. Here, we use NMR spectroscopy to characterize the conformational dynamics of the transmembrane core of the ß(2)-adrenergic receptor (ß(2)AR), a prototypical GPCR. We labeled ß(2)AR with (13)CH(3)ε-methionine and obtained HSQC spectra of unliganded receptor as well as receptor bound to an inverse agonist, an agonist, and a G-protein-mimetic nanobody. These studies provide evidence for conformational states not observed in crystal structures, as well as substantial conformational heterogeneity in agonist- and inverse-agonist-bound preparations. They also show that for ß(2)AR, unlike rhodopsin, an agonist alone does not stabilize a fully active conformation, suggesting that the conformational link between the agonist-binding pocket and the G-protein-coupling surface is not rigid. The observed heterogeneity may be important for ß(2)AR's ability to engage multiple signaling and regulatory proteins.


Assuntos
Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Conformação Proteica , Transdução de Sinais , Termodinâmica
17.
Structure ; 20(8): 1332-42, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22771214

RESUMO

In K+ channels, rearrangements of the pore outer vestibule have been associated with C-type inactivation gating. Paradoxically, the crystal structure of Open/C-type inactivated KcsA suggests these movements to be modest in magnitude. In this study, we show that under physiological conditions, the KcsA outer vestibule undergoes relatively large dynamic rearrangements upon inactivation. External Cd2+ enhances the rate of C-type inactivation in an cysteine mutant (Y82C) via metal-bridge formation. This effect is not present in a non-inactivating mutant (E71A/Y82C). Tandem dimer and tandem tetramer constructs of equivalent cysteine mutants in KcsA and Shaker K+ channels demonstrate that these Cd2+ metal bridges are formed only between adjacent subunits. This is well supported by molecular dynamics simulations. Based on the crystal structure of Cd2+ -bound Y82C-KcsA in the closed state, together with electron paramagnetic resonance distance measurements in the KcsA outer vestibule, we suggest that subunits must dynamically come in close proximity as the channels undergo inactivation.


Assuntos
Proteínas de Bactérias/química , Cádmio/química , Complexos de Coordenação/química , Canais de Potássio/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Lipossomos/química , Simulação de Dinâmica Molecular , Canais de Potássio/genética , Estabilidade Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Streptomyces lividans , Termodinâmica
18.
Nature ; 482(7386): 552-6, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22358844

RESUMO

Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G(q/11)-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G(i/o)-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.


Assuntos
Receptor Muscarínico M3/química , Receptor Muscarínico M3/metabolismo , Acetilcolina/química , Acetilcolina/metabolismo , Sítio Alostérico , Animais , Células COS , Cristalização , Cristalografia por Raios X , Cinética , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Ensaio Radioligante , Ratos , Derivados da Escopolamina/química , Derivados da Escopolamina/metabolismo , Especificidade por Substrato , Brometo de Tiotrópio
19.
J Gen Physiol ; 138(6): 571-80, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22124115

RESUMO

The amount of ionic current flowing through K(+) channels is determined by the interplay between two separate time-dependent processes: activation and inactivation gating. Activation is concerned with the stimulus-dependent opening of the main intracellular gate, whereas inactivation is a spontaneous conformational transition of the selectivity filter toward a nonconductive state occurring on a variety of timescales. A recent analysis of multiple x-ray structures of open and partially open KcsA channels revealed the mechanism by which movements of the inner activation gate, formed by the inner helices from the four subunits of the pore domain, bias the conformational changes at the selectivity filter toward a nonconductive inactivated state. This analysis highlighted the important role of Phe103, a residue located along the inner helix, near the hinge position associated with the opening of the intracellular gate. In the present study, we use free energy perturbation molecular dynamics simulations (FEP/MD) to quantitatively elucidate the thermodynamic basis for the coupling between the intracellular gate and the selectivity filter. The results of the FEP/MD calculations are in good agreement with experiments, and further analysis of the repulsive, van der Waals dispersive, and electrostatic free energy contributions reveals that the energetic basis underlying the absence of inactivation in the F103A mutation in KcsA is the absence of the unfavorable steric interaction occurring with the large Ile100 side chain in a neighboring subunit when the intracellular gate is open and the selectivity filter is in a conductive conformation. Macroscopic current analysis shows that the I100A mutant indeed relieves inactivation in KcsA, but to a lesser extent than the F103A mutant.


Assuntos
Canais de Potássio/química , Termodinâmica , Ativação do Canal Iônico , Isoleucina/genética , Simulação de Dinâmica Molecular , Mutação , Canais de Potássio/genética , Conformação Proteica
20.
Proc Natl Acad Sci U S A ; 108(46): 18684-9, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22031696

RESUMO

A third of marketed drugs act by binding to a G-protein-coupled receptor (GPCR) and either triggering or preventing receptor activation. Although recent crystal structures have provided snapshots of both active and inactive functional states of GPCRs, these structures do not reveal the mechanism by which GPCRs transition between these states. Here we propose an activation mechanism for the ß(2)-adrenergic receptor, a prototypical GPCR, based on atomic-level simulations in which an agonist-bound receptor transitions spontaneously from the active to the inactive crystallographically observed conformation. A loosely coupled allosteric network, comprising three regions that can each switch individually between multiple distinct conformations, links small perturbations at the extracellular drug-binding site to large conformational changes at the intracellular G-protein-binding site. Our simulations also exhibit an intermediate that may represent a receptor conformation to which a G protein binds during activation, and suggest that the first structural changes during receptor activation often take place on the intracellular side of the receptor, far from the drug-binding site. By capturing this fundamental signaling process in atomic detail, our results may provide a foundation for the design of drugs that control receptor signaling more precisely by stabilizing specific receptor conformations.


Assuntos
Receptores Adrenérgicos beta 2/metabolismo , Sítio Alostérico , Motivos de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X/métodos , Proteínas de Ligação ao GTP/química , Humanos , Ligantes , Modelos Biológicos , Conformação Molecular , Conformação Proteica , Prótons , Transdução de Sinais , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA