Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37176358

RESUMO

Large deployable cable net antennas have attracted extensive attention worldwide because of their simple structure and high storage ratio. The cable net structure is affected by long exposure in a harsh space environment during satellite operation, resulting in large thermal deformation and stress relaxation, which leads to a degradation of antenna performance. To address the thermal deformation of the cable net structure, a shape memory cable (SMC) net structure model was proposed with surface accuracy as the research objective. Specifically, we aimed to utilize its phase transition characteristics to adjust the thermal deformation of cable net structure and improve its surface accuracy. A shape memory cable net structure model with a diameter of 2.2 m was built, and a normal temperature experiment and high- and low-temperature experiments were carried out. High- and low-temperature test refers to environmental simulation testing of shape memory cable net structures under high- and low-temperature conditions. This was done to determine whether the adjustment method for surface accuracy meets the requirements. The results showed that the shape memory alloy wire has a relatively stable ability to adjust the surface accuracy of the cable net structure at room temperature. During temperature cycling, the thermal deformation of the shape memory cable net structure is slight, and the surface accuracy is good. Compared with ordinary cable net structures, the shape memory cable net structure has improved surface accuracy by 44.4% and 45.2% at high and low temperatures, respectively. This proved the effectiveness of the method for adjusting surface accuracy. These experimental results offer guiding significance for engineering applications.

2.
Materials (Basel) ; 12(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426436

RESUMO

The high surface accuracy design of a cable-net antenna structure under the disturbance of the extremely harsh space environment requires the antenna to have good in-orbit adjustment ability for surface accuracy. A shape memory cable-net (SMC) structure is proposed in this paper and believed to be able to improve the in-orbit surface accuracy of the cable-net antenna. Firstly, the incremental stiffness equation of a one-dimensional bar element of the shape memory alloy (SMA) to express the relationship between the force, temperature and deformation was effectively constructed. Secondly, the finite element model of the SMC antenna structure incorporated the incremental stiffness equation of a SMA was established. Thirdly, a shape active adjustment procedure of surface accuracy based on the optimization method was presented. Finally, a numerical example of the shape memory cable net structure applied to the parabolic reflectors of space antennas was analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA